Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety o...Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.展开更多
As an important tool for marine exploration, the autonomous underwater vehicle(AUV) must home in and dock at a docking station(DS) to be recharged, repaired, or to exchange information at set intervals. However, the c...As an important tool for marine exploration, the autonomous underwater vehicle(AUV) must home in and dock at a docking station(DS) to be recharged, repaired, or to exchange information at set intervals. However, the complex and hostile underwater environment makes this process challenging. This study proposes a real-time method based on polarized optical guidance for determining the position and attitude of the AUV relative to its DS. Four polarized artificial underwater landmarks are positioned at the DS, which are recognized by the AUV vision system. Compared with light intensity, the polarization of a light beam is known to be better maintained at greater propagation distances, especially in underwater environments. The proposed method, which is inspired by the ability of marine animals to communicate, calculates the pose parameters in less than 10 ms without any other navigational information. The simulation results reveal that the angle errors are small and the position errors are no more than 0.116 m within 100 m in the coastal ocean. The results of underwater experiments further demonstrate the feasibility of the proposed method, which extends the operating distance of the AUV beyond what is currently possible while maintaining the precision of traditional optical guidance.展开更多
This paper initially reviews types of deep space navigation methods. Then, it studies the use of pulsars as one of sources emitting electromagnetic waves in navigation;hence more details regarding the pulsar physics a...This paper initially reviews types of deep space navigation methods. Then, it studies the use of pulsars as one of sources emitting electromagnetic waves in navigation;hence more details regarding the pulsar physics and the history of navigation using pulsars are presented. The various methods of navigation (including radio method), their advantages and disadvantages—in comparison with navigation using pulsars in spacecraft—are discussed. Then, the equations necessary for calculating position and velocity of a spacecraft (such as the arrival time of pulse from pulsar to the receiver) are introduced, and the methods of calculating position and velocity are dealt with. Finally, two algorithms are presented for positioning, and one for velocity. Attitude determination follows the same simple methods presented in various articles.展开更多
An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the tes...An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the test mass and outer satellite are firstly derived.To guarantee prescribed performance bounds on the transient and steady control errors of relative states,a performance constrained control law is formulated with an error transformed function.In addition,the requirements to know the system parameters and the upper bound of the external disturbance in advance have been eliminated by adaptive updating technique.A command filter is concurrently used to overcome the problem of explosion of complexity inherent in the backstepping control design.Subsequently,a novel auxiliary system is constructed to compensate the adverse effects of the actuator saturation constrains.It is proved that all signals in the closed?loop system are ultimately bounded and prescribed performance of relative position and attitude control errors are guaranteed.Finally,numerical simulation results are given to demonstrate the effectiveness of the proposed approach.展开更多
The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunn...The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunnel lining quality.This study proposes a hybrid deep learning approach for predicting dynamic attitude and position prediction of super-large diameter shield.The approach consists of principal component analysis(PCA)and temporal convolutional network(TCN).The former is used for employing feature level fusion based on features of the shield data to reduce uncertainty,improve accuracy and the data effect,and 9 sets of required principal component characteristic data are obtained.The latter is adopted to process sequence data in predicting the dynamic attitude and position for the advantages and potential of convolution network.The approach’s effectiveness is exemplified using data from a tunnel construction project in China.The obtained results show remarkable accuracy in predicting the global attitude and position,with an average error ratio of less than 2 mm on four shield outputs in 97.30%of cases.Moreover,the approach displays strong performance in accurately predicting sudden fluctuations in shield attitude and position,with an average prediction accuracy of 89.68%.The proposed hybrid model demonstrates superiority over TCN,long short-term memory(LSTM),and recurrent neural network(RNN)in multiple indexes.Shapley additive exPlanations(SHAP)analysis is also performed to investigate the significance of different data features in the prediction process.This study provides a real-time warning for the shield driver to adjust the attitude and position of super-large diameter shields.展开更多
This work presents a controller designed for position-controlled quadrupedal dynamic locomotion,aiming at simple and robust trotting control. The controller takes the torso attitude angles and velocities into planning...This work presents a controller designed for position-controlled quadrupedal dynamic locomotion,aiming at simple and robust trotting control. The controller takes the torso attitude angles and velocities into planning foot trajectories. Firstly design of the servo motor actuated quadruped robot is introduced and the kinematic equations are deduced. Then a scheme is presented for controlling the robot torso attitude based on the virtual leg model. Furthermore,it demonstrates the design of the controller which enables the robot to have a wide range of trotting gaits and omni-directional motions. Finally,results of robust trotting in various speeds,path tracking and push recovery in simulation are reported,and results of trotting on real quadruped robots will be studied.展开更多
In this paper,the Global Positioning System(GPS)interferometer provides the preliminarily computed quaternions,which are then employed as the measurement of the extended Kalman filter(EKF)for the attitude determinatio...In this paper,the Global Positioning System(GPS)interferometer provides the preliminarily computed quaternions,which are then employed as the measurement of the extended Kalman filter(EKF)for the attitude determination system.The estimated quaternion elements from the EKF output with noticeably improved precision can be converted to the Euler angles for navigation applications.The aim of the study is twofold.Firstly,the GPS-based computed quaternion vector is utilized to avoid the singularity problem.Secondly,the quaternion estimator based on the EKF is adopted to improve the estimation accuracy.Determination of the unknown baseline vector between the antennas sits at the heart of GPS-based attitude determination.Although utilization of the carrier phase observables enables the relative positioning to achieve centimeter level accuracy,however,the quaternion elements derived from the GPS interferometer are inherently noisy.This is due to the fact that the baseline vectors estimated by the least-squares method are based on the raw double-differenced measurements.Construction of the transformation matrix is accessible according to the estimate of baseline vectors and thereafter the computed quaternion elements can be derived.Using the Euler angle method,the process becomes meaningless when the angles are at 90where the singularity problem occurs.A good alternative is the quaternion approach,which possesses advantages over the equivalent Euler angle based transformation since they apply to all attitudes.Simulation results on the attitude estimation performance based on the proposed method will be presented and compared to the conventional method.The results presented in this paper elucidate the superiority of proposed algorithm.展开更多
The Global Positioning System(GPS)offers the interferometer for attitude determination by processing the carrier phase observables.By using carrier phase observables,the relative positioning is obtained in centimeter ...The Global Positioning System(GPS)offers the interferometer for attitude determination by processing the carrier phase observables.By using carrier phase observables,the relative positioning is obtained in centimeter level.GPS interferometry has been firstly used in precise static relative positioning,and thereafter in kinematic positioning.The carrier phase differential GPS based on interferometer principles can solve for the antenna baseline vector,defined as the vector between the antenna designated master and one of the slave antennas,connected to a rigid body.Determining the unknown baseline vectors between the antennas sits at the heart of GPS-based attitude determination.The conventional solution of the baseline vectors based on least-squares approach is inherently noisy,which results in the noisy attitude solutions.In this article,the complementary Kalman filter(CKF)is employed for solving the baseline vector in the attitude determination mechanism to improve the performance,where the receiver-satellite double differenced observable was utilized as the measurement.By using the carrier phase observables,the relative positioning is obtained in centimeter level.Employing the CKF provides several advantages,such as accuracy improvement,reliability enhancement,and real-time assurance.Simulation results based on the conventional method where the least-squares approach is involved,and the proposed method where the CKF is involved are compared and discussed.展开更多
A method is presented for near-Earth spacecraft or aviation vehicle's attitude rate estimation by using relative Doppler frequency shift; of the Global Positioning System (GPS) carrier. It comprises two GPS receiv...A method is presented for near-Earth spacecraft or aviation vehicle's attitude rate estimation by using relative Doppler frequency shift; of the Global Positioning System (GPS) carrier. It comprises two GPS receiving antennas, a signal processing circuit and an algorithm. The whole system is relatively simple, the cost and weight, as well as power consumption, are very low.展开更多
Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation.This study therefore introduced a framework to predict the attitude an...Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation.This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory(LSTM)model with attention mechanism.The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method.By adding the attention mechanism into the LSTM model,the proposed model can focus more on parameters with higher weights.Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters.Compared with LSTM model,LSTM-attention model has higher accuracy.The mean value of coefficient of determination(R^(2))increases from 0.625 to 0.736,and the mean value of root mean square error(RMSE)decreases from 3.31 to 2.24.The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering.展开更多
This paper discusses the design and implementation of a low cost multi-sensor integrated attitude determination system for small unmanned aerial vehicles( UAVs),which uses strapdown inertial navigation system( SINS) b...This paper discusses the design and implementation of a low cost multi-sensor integrated attitude determination system for small unmanned aerial vehicles( UAVs),which uses strapdown inertial navigation system( SINS) based on micro electromechanical system( MEMS) inertial sensors,commercial GPS receiver,and 3-axis magnetometer.MEMS-SINS initial attitude determination cannot be well performed for the reason that the MEMS inertial sensors biases are time-varying and poor repeatability,therefore in this paper the magnetometer and inclinometer are used to assist the MEMS-SINS initial attitude determination and MEMS inertial sensors field calibration.Furthermore,the attitude determination algorithms are presented to estimate the full attitude during GPS signal outage and non-accelerating situation.Additionally,the attitude information estimation results are compared with the reference of the non-magnetic marble platform and 3-axis turntable.Then the attitude estimation precision satisfies the requirement of attitude measurement for small UAVs during GPS signal outage and availability.Finally,the small UAV autonomous flight test results show that the low cost and real-time attitude determination system can yield continuous,reliable and effective attitude information for small UAVs.展开更多
Background: Malaria has historically been a major public health concern in Yemen, noted to be the country with the highest prevalence in the Eastern Mediterranean Region. As more and more children attend school, gover...Background: Malaria has historically been a major public health concern in Yemen, noted to be the country with the highest prevalence in the Eastern Mediterranean Region. As more and more children attend school, governments are increasingly recognizing the importance of child health for educational achievement. Aim: The aim is to assess the baseline knowledge, attitude and practice of pupil towards malaria before the health education activities. Methods: We conducted a cross-sectional study, in four randomly selected districts (rural and urban) of Taiz governorate. The study population was 1598 pupils in primary schools. Data was collected using questioner. Results: The pupils who recognized mosquito bite as a route of malaria transmission was 769 (48.1%), while the pupils who recognized fever as the main symptom were 786 (49.2%), 281 (17.58%) of pupils recognized convulsion as a complication of malaria. Regarding protective method 881 (55.31%) were mentioned the cover of the tanks as a protective method, about the BN 293 (18.3%) of pupils known about the BN and 280 (17.5%) mentioned children & pregnancy were the vulnerable groups to malaria. Conclusions and Recommendation: the percentage of knowledge of malaria knowledge and methods of prevention was low (24.5%). Also, the positive attitude and practice toward malaria was 45%. The rate of having bed-nets was very low (10.1%). There were misconceptions of malaria cause and transmission (48.1%). We recommend conducting health education activities that will focus on increasing the knowledge, attitude and practice levels of malaria among school pupils.展开更多
In this paper,the estimator-based Global Positioning System(GPS)attitude and angular velocity determination is presented.Outputs of the attitude estimator include the attitude angles and attitude rates or body angular...In this paper,the estimator-based Global Positioning System(GPS)attitude and angular velocity determination is presented.Outputs of the attitude estimator include the attitude angles and attitude rates or body angular velocities,depending on the design of estimator.Traditionally as a position,velocity and time sensor,the GPS also offers a free attitude-determination interferometer.GPS research and applications to the field of attitude determination using carrier phase or Doppler measurement has been extensively conducted.The rawattitude solution using the interferometry technique based on the least-squares approach is inherently noisy.The estimator such as the Kalman filter(KF)or extended Kalman filter(EKF)can be incorporated into the GPS interferometer,potentially providing several advantages,such as accuracy improvement,reliability enhancement,and real-time characteristics.Three estimator-based approaches are investigated for performance comparison,including(1)KF with measurement involving attitude angles only;(2)EKF with measurements based on attitude angles only;(3)EKF with measurements involving both attitude angles and body angular rates.The assistance from body mounted gyroscopes,if available,can be utilized as the measurements for further performance improvement,especially useful for the case of signal-challenged environment,such as the GPS outages.Modeling of the dynamic process involving the body angular rates and derivation of the related algorithm will be presented.Simulation results for various estimator-based approaches are conducted;performance comparison is presented for the case of GPS outages.展开更多
基金supported by the National Science Foundation of China(61703437,52232014,61690210,61690212)。
文摘Inspired by the integrated guidance and control design for endo-atmospheric aircraft,the integrated position and attitude control of spacecraft has attracted increasing attention and gradually induced a wide variety of study results in last over two decades,fully incorporating control requirements and actuator characteristics of space missions.This paper presents a novel and comprehensive survey to the coupled position and attitude motions of spacecraft from the perspective of dynamics and control.To this end,a systematic analysis is firstly conducted in details to show the position and attitude mutual couplings of spacecraft.Particularly,in terms of the time discrepancy between spacecraft position and attitude motions,space missions can be categorized into two types:space proximity operation and space orbital maneuver.Based on this classification,the studies on the coupled dynamic modeling and the integrated control design for position and attitude motions of spacecraft are sequentially summarized and analyzed.On the one hand,various coupled position and dynamic formulations of spacecraft based on various mathematical tools are reviewed and compared from five aspects,including mission applicability,modeling simplicity,physical clearance,information matching and expansibility.On the other hand,the development of the integrated position and attitude control of spacecraft is analyzed for two space missions,and especially,five distinctive development trends are captured for space operation missions.Finally,insightful prospects on future development of the integrated position and attitude control technology of spacecraft are proposed,pointing out current primary technical issues and possible feasible solutions.
基金supported by the National Natural Science Foundation of China (NSFC)(Nos. 51675076,51505062)the Science Fund for Creative Research Groups of NSFC (No. 51621064)the Pre-Research Foundation of China (No. 61405180102)。
文摘As an important tool for marine exploration, the autonomous underwater vehicle(AUV) must home in and dock at a docking station(DS) to be recharged, repaired, or to exchange information at set intervals. However, the complex and hostile underwater environment makes this process challenging. This study proposes a real-time method based on polarized optical guidance for determining the position and attitude of the AUV relative to its DS. Four polarized artificial underwater landmarks are positioned at the DS, which are recognized by the AUV vision system. Compared with light intensity, the polarization of a light beam is known to be better maintained at greater propagation distances, especially in underwater environments. The proposed method, which is inspired by the ability of marine animals to communicate, calculates the pose parameters in less than 10 ms without any other navigational information. The simulation results reveal that the angle errors are small and the position errors are no more than 0.116 m within 100 m in the coastal ocean. The results of underwater experiments further demonstrate the feasibility of the proposed method, which extends the operating distance of the AUV beyond what is currently possible while maintaining the precision of traditional optical guidance.
文摘This paper initially reviews types of deep space navigation methods. Then, it studies the use of pulsars as one of sources emitting electromagnetic waves in navigation;hence more details regarding the pulsar physics and the history of navigation using pulsars are presented. The various methods of navigation (including radio method), their advantages and disadvantages—in comparison with navigation using pulsars in spacecraft—are discussed. Then, the equations necessary for calculating position and velocity of a spacecraft (such as the arrival time of pulse from pulsar to the receiver) are introduced, and the methods of calculating position and velocity are dealt with. Finally, two algorithms are presented for positioning, and one for velocity. Attitude determination follows the same simple methods presented in various articles.
文摘An adaptive prescribed performance control scheme is proposed for the drag free satellite in the presence of actuator saturation and external disturbances.The relative translation and rotation dynamics between the test mass and outer satellite are firstly derived.To guarantee prescribed performance bounds on the transient and steady control errors of relative states,a performance constrained control law is formulated with an error transformed function.In addition,the requirements to know the system parameters and the upper bound of the external disturbance in advance have been eliminated by adaptive updating technique.A command filter is concurrently used to overcome the problem of explosion of complexity inherent in the backstepping control design.Subsequently,a novel auxiliary system is constructed to compensate the adverse effects of the actuator saturation constrains.It is proved that all signals in the closed?loop system are ultimately bounded and prescribed performance of relative position and attitude control errors are guaranteed.Finally,numerical simulation results are given to demonstrate the effectiveness of the proposed approach.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52078304,51938008,52090084,and 52208354)Guangdong Province Key Field R&D Program Project(Grant Nos.2019B111108001 and 2022B0101070001)+1 种基金Shenzhen Fundamental Research(Grant No.20220525163716003)the Pearl River Delta Water Resources Allocation Project(CD88-GC022020-0038).
文摘The presented research introduces a novel hybrid deep learning approach for the dynamic prediction of the attitude and position of super-large diameter shields-a critical consideration for construction safety and tunnel lining quality.This study proposes a hybrid deep learning approach for predicting dynamic attitude and position prediction of super-large diameter shield.The approach consists of principal component analysis(PCA)and temporal convolutional network(TCN).The former is used for employing feature level fusion based on features of the shield data to reduce uncertainty,improve accuracy and the data effect,and 9 sets of required principal component characteristic data are obtained.The latter is adopted to process sequence data in predicting the dynamic attitude and position for the advantages and potential of convolution network.The approach’s effectiveness is exemplified using data from a tunnel construction project in China.The obtained results show remarkable accuracy in predicting the global attitude and position,with an average error ratio of less than 2 mm on four shield outputs in 97.30%of cases.Moreover,the approach displays strong performance in accurately predicting sudden fluctuations in shield attitude and position,with an average prediction accuracy of 89.68%.The proposed hybrid model demonstrates superiority over TCN,long short-term memory(LSTM),and recurrent neural network(RNN)in multiple indexes.Shapley additive exPlanations(SHAP)analysis is also performed to investigate the significance of different data features in the prediction process.This study provides a real-time warning for the shield driver to adjust the attitude and position of super-large diameter shields.
基金Supported by the National Natural Science Foundation of China(No.61233014,61305130)China Postdoctoral Science Foundation(No.2013M541912)the Shandong Provincial Natural Science Foundation(No.ZR2013FQ003,ZR2013EEM027)
文摘This work presents a controller designed for position-controlled quadrupedal dynamic locomotion,aiming at simple and robust trotting control. The controller takes the torso attitude angles and velocities into planning foot trajectories. Firstly design of the servo motor actuated quadruped robot is introduced and the kinematic equations are deduced. Then a scheme is presented for controlling the robot torso attitude based on the virtual leg model. Furthermore,it demonstrates the design of the controller which enables the robot to have a wide range of trotting gaits and omni-directional motions. Finally,results of robust trotting in various speeds,path tracking and push recovery in simulation are reported,and results of trotting on real quadruped robots will be studied.
基金the Ministry of Science and Technology of the Republic of China[Grant No.MOST 108-2221-E-019-013].
文摘In this paper,the Global Positioning System(GPS)interferometer provides the preliminarily computed quaternions,which are then employed as the measurement of the extended Kalman filter(EKF)for the attitude determination system.The estimated quaternion elements from the EKF output with noticeably improved precision can be converted to the Euler angles for navigation applications.The aim of the study is twofold.Firstly,the GPS-based computed quaternion vector is utilized to avoid the singularity problem.Secondly,the quaternion estimator based on the EKF is adopted to improve the estimation accuracy.Determination of the unknown baseline vector between the antennas sits at the heart of GPS-based attitude determination.Although utilization of the carrier phase observables enables the relative positioning to achieve centimeter level accuracy,however,the quaternion elements derived from the GPS interferometer are inherently noisy.This is due to the fact that the baseline vectors estimated by the least-squares method are based on the raw double-differenced measurements.Construction of the transformation matrix is accessible according to the estimate of baseline vectors and thereafter the computed quaternion elements can be derived.Using the Euler angle method,the process becomes meaningless when the angles are at 90where the singularity problem occurs.A good alternative is the quaternion approach,which possesses advantages over the equivalent Euler angle based transformation since they apply to all attitudes.Simulation results on the attitude estimation performance based on the proposed method will be presented and compared to the conventional method.The results presented in this paper elucidate the superiority of proposed algorithm.
基金This work has been partially supported by the Ministry of Science and Technology of the Republic of China[Grant Number:MOST 108-2221-E-019-013].
文摘The Global Positioning System(GPS)offers the interferometer for attitude determination by processing the carrier phase observables.By using carrier phase observables,the relative positioning is obtained in centimeter level.GPS interferometry has been firstly used in precise static relative positioning,and thereafter in kinematic positioning.The carrier phase differential GPS based on interferometer principles can solve for the antenna baseline vector,defined as the vector between the antenna designated master and one of the slave antennas,connected to a rigid body.Determining the unknown baseline vectors between the antennas sits at the heart of GPS-based attitude determination.The conventional solution of the baseline vectors based on least-squares approach is inherently noisy,which results in the noisy attitude solutions.In this article,the complementary Kalman filter(CKF)is employed for solving the baseline vector in the attitude determination mechanism to improve the performance,where the receiver-satellite double differenced observable was utilized as the measurement.By using the carrier phase observables,the relative positioning is obtained in centimeter level.Employing the CKF provides several advantages,such as accuracy improvement,reliability enhancement,and real-time assurance.Simulation results based on the conventional method where the least-squares approach is involved,and the proposed method where the CKF is involved are compared and discussed.
基金Supported by the National Aeronautics and Space Administration(NASA),Goddard Space Flight Center,USA,under Contract AN13709
文摘A method is presented for near-Earth spacecraft or aviation vehicle's attitude rate estimation by using relative Doppler frequency shift; of the Global Positioning System (GPS) carrier. It comprises two GPS receiving antennas, a signal processing circuit and an algorithm. The whole system is relatively simple, the cost and weight, as well as power consumption, are very low.
基金supported by Key Program of the National Natural Science Foundation of China(Grant No.52192664)the Major Program of Science&Technol-ogy of Hubei Province(Grant No.2020ACA006)。
文摘Shield machine may deviate from its design axis during excavation due to the uncertainty of geological environment and the complexity of operation.This study therefore introduced a framework to predict the attitude and position of shield machine by combining long short-term memory(LSTM)model with attention mechanism.The data obtained from the Wuhan Rail Transit Line 6 project were utilized to verify the feasibility of the proposed method.By adding the attention mechanism into the LSTM model,the proposed model can focus more on parameters with higher weights.Sensitivity analysis based on Pearson correlation coefficient was conducted to improve the prediction efficiency and reduce the irrelevant input parameters.Compared with LSTM model,LSTM-attention model has higher accuracy.The mean value of coefficient of determination(R^(2))increases from 0.625 to 0.736,and the mean value of root mean square error(RMSE)decreases from 3.31 to 2.24.The proposed LSTM-attention model can provide an effective prediction for attitude and position of shield machine in practical tunneling engineering.
基金Sponsored by the China Postdoctoral Science Foundation(Grant No.2013M540857)the Fundamental Research Funds for the Central Universities(Grant No.FRF-TP-14-019A1)
文摘This paper discusses the design and implementation of a low cost multi-sensor integrated attitude determination system for small unmanned aerial vehicles( UAVs),which uses strapdown inertial navigation system( SINS) based on micro electromechanical system( MEMS) inertial sensors,commercial GPS receiver,and 3-axis magnetometer.MEMS-SINS initial attitude determination cannot be well performed for the reason that the MEMS inertial sensors biases are time-varying and poor repeatability,therefore in this paper the magnetometer and inclinometer are used to assist the MEMS-SINS initial attitude determination and MEMS inertial sensors field calibration.Furthermore,the attitude determination algorithms are presented to estimate the full attitude during GPS signal outage and non-accelerating situation.Additionally,the attitude information estimation results are compared with the reference of the non-magnetic marble platform and 3-axis turntable.Then the attitude estimation precision satisfies the requirement of attitude measurement for small UAVs during GPS signal outage and availability.Finally,the small UAV autonomous flight test results show that the low cost and real-time attitude determination system can yield continuous,reliable and effective attitude information for small UAVs.
文摘Background: Malaria has historically been a major public health concern in Yemen, noted to be the country with the highest prevalence in the Eastern Mediterranean Region. As more and more children attend school, governments are increasingly recognizing the importance of child health for educational achievement. Aim: The aim is to assess the baseline knowledge, attitude and practice of pupil towards malaria before the health education activities. Methods: We conducted a cross-sectional study, in four randomly selected districts (rural and urban) of Taiz governorate. The study population was 1598 pupils in primary schools. Data was collected using questioner. Results: The pupils who recognized mosquito bite as a route of malaria transmission was 769 (48.1%), while the pupils who recognized fever as the main symptom were 786 (49.2%), 281 (17.58%) of pupils recognized convulsion as a complication of malaria. Regarding protective method 881 (55.31%) were mentioned the cover of the tanks as a protective method, about the BN 293 (18.3%) of pupils known about the BN and 280 (17.5%) mentioned children & pregnancy were the vulnerable groups to malaria. Conclusions and Recommendation: the percentage of knowledge of malaria knowledge and methods of prevention was low (24.5%). Also, the positive attitude and practice toward malaria was 45%. The rate of having bed-nets was very low (10.1%). There were misconceptions of malaria cause and transmission (48.1%). We recommend conducting health education activities that will focus on increasing the knowledge, attitude and practice levels of malaria among school pupils.
基金This work has been partially supported by the Ministry of Science and Technology,Taiwan[Grant Numbers MOST 109-2221-E-019-010 and MOST 110-2221-E-019-042].
文摘In this paper,the estimator-based Global Positioning System(GPS)attitude and angular velocity determination is presented.Outputs of the attitude estimator include the attitude angles and attitude rates or body angular velocities,depending on the design of estimator.Traditionally as a position,velocity and time sensor,the GPS also offers a free attitude-determination interferometer.GPS research and applications to the field of attitude determination using carrier phase or Doppler measurement has been extensively conducted.The rawattitude solution using the interferometry technique based on the least-squares approach is inherently noisy.The estimator such as the Kalman filter(KF)or extended Kalman filter(EKF)can be incorporated into the GPS interferometer,potentially providing several advantages,such as accuracy improvement,reliability enhancement,and real-time characteristics.Three estimator-based approaches are investigated for performance comparison,including(1)KF with measurement involving attitude angles only;(2)EKF with measurements based on attitude angles only;(3)EKF with measurements involving both attitude angles and body angular rates.The assistance from body mounted gyroscopes,if available,can be utilized as the measurements for further performance improvement,especially useful for the case of signal-challenged environment,such as the GPS outages.Modeling of the dynamic process involving the body angular rates and derivation of the related algorithm will be presented.Simulation results for various estimator-based approaches are conducted;performance comparison is presented for the case of GPS outages.