We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0...We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0, x′(0)-∑i=1^m2 βi x′(ηi) = 0, x′(1)=0,where 0 ≤ ai≤∑i=1^m1 αi 〈 1, i = 1, 2, ···, m1, 0 〈 ξ1〈 ξ2〈 ··· 〈 ξm1〈 1, 0 ≤βj≤∑i^m2=1βi〈1,J=1,2, ···, m2, 0 〈 η1〈 η2〈 ··· 〈 ηm2〈 1. And we obtain some necessa βi 〈=11, j = 1,ry and sufficient conditions for the existence of C^1[0, 1] and C^2[0, 1] positive solutions by constructing lower and upper solutions and by using the comparison theorem. Our nonlinearity f(t, x, y)may be singular at x, y, t = 0 and/or t = 1.展开更多
The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key feat...The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key features of which include positive trend in inner Tibet Plateau and South China and negative trend in North China plain and high mountain Asia(HMA).We also present the patterns of amplitudes and phases of annual and semiannual change.The mechanism underlying the semiannual period is explicitly discussed.The displacement in three directions expressed in terms of geo-potential spherical coefficients and load Love numbers are given.A case study applied with these equations is presented.The results show that Global Positioning System(GPS) observations can be used to compare with Gravity Recovery and Climate Experiment(GRACE) derived displacement and the vertical direction has a signal-noise-ratio of about one order of magnitude larger than the horizontal directions.展开更多
Smartphones typically compute position using duty-cycled Global Navigation Satellite System (GNSS) L1 code measurements and Single Point Positioning (SPP) processing with the aid of cellular and other measurements. Th...Smartphones typically compute position using duty-cycled Global Navigation Satellite System (GNSS) L1 code measurements and Single Point Positioning (SPP) processing with the aid of cellular and other measurements. This internal positioning solution has an accuracy of several tens to hundreds of meters in realistic environments (hand-held, vehicle dashboard, suburban, urban forested, etc.). With the advent of multi-constellation, dual-frequency GNSS chips in smartphones, along with the ability to extract raw code and carrier-phase measurements, it is possible to use Precise Point Positioning (PPP) to improve positioning without any additional equipment. This research analyses GNSS measurement quality parameters from a Xiaomi MI 8 dual-frequency smartphone in varied, realistic environments. In such environments, the system suffers from frequent phase loss-of-lock leading to data gaps. The smartphone measurements have low and irregular carrier-to-noise (C/N0) density ratio and high multipath, which leads to poor or no positioning solution. These problems are addressed by implementing a prediction technique for data gaps and a C/N0-based stochastic model for assigning realistic a priori weights to the observables in the PPP processing engine. Using these conditioning techniques, there is a 64% decrease in the horizontal positioning Root Mean Square (RMS) error and 100% positioning solution availability in sub-urban environments tested. The horizontal and 3D RMS were 20 cm and 30 cm respectively in a static open-sky environment and the horizontal RMS for the realistic kinematic scenario was 7 m with the phone on the dashboard of the car, using the SwiftNav Piksi Real-Time Kinematic (RTK) solu-tion as reference. The PPP solution, computed using the YorkU PPP engine, also had a 5-10% percentage point more availability than the RTK solution, computed using RTKLIB software, since missing measurements in the logged file cause epoch rejection and a non-continuous solution, a problem which is solved by prediction for the PPP solution. The internal unaided positioning solution of the phone obtained from the logged NMEA (The National Marine Elec-tronics Association) file was computed using point positioning with the aid of measurements from internal sensors. The PPP solution was 80% more accurate than the internal solution which had periodic drifts due to non-continuous computation of solution.展开更多
基金supported by the National Science Foundation of Shandong Province(ZR2009AM004)
文摘We mainly study the existence of positive solutions for the following third order singular multi-point boundary value problem{x^(3)(t) + f(t, x(t), x′(t)) = 0, 0 〈 t 〈 1,x(0)-∑i=1^m1 αi x(ξi) = 0, x′(0)-∑i=1^m2 βi x′(ηi) = 0, x′(1)=0,where 0 ≤ ai≤∑i=1^m1 αi 〈 1, i = 1, 2, ···, m1, 0 〈 ξ1〈 ξ2〈 ··· 〈 ξm1〈 1, 0 ≤βj≤∑i^m2=1βi〈1,J=1,2, ···, m2, 0 〈 η1〈 η2〈 ··· 〈 ηm2〈 1. And we obtain some necessa βi 〈=11, j = 1,ry and sufficient conditions for the existence of C^1[0, 1] and C^2[0, 1] positive solutions by constructing lower and upper solutions and by using the comparison theorem. Our nonlinearity f(t, x, y)may be singular at x, y, t = 0 and/or t = 1.
基金supported financially by the National Natural Science Foundation of China(41174063,41331066 and41474059)the CAS/CAFEA International Partnership Program for Creative Research Teams(KZZD-EW-TZ-19)the SKLGED Foundation(2014-1-1-E)
文摘The complex geographical environment in China makes its gravity signals miscellaneous.This work gives a comprehensive representation and explanation in secular trend of gravity change in different regions,the key features of which include positive trend in inner Tibet Plateau and South China and negative trend in North China plain and high mountain Asia(HMA).We also present the patterns of amplitudes and phases of annual and semiannual change.The mechanism underlying the semiannual period is explicitly discussed.The displacement in three directions expressed in terms of geo-potential spherical coefficients and load Love numbers are given.A case study applied with these equations is presented.The results show that Global Positioning System(GPS) observations can be used to compare with Gravity Recovery and Climate Experiment(GRACE) derived displacement and the vertical direction has a signal-noise-ratio of about one order of magnitude larger than the horizontal directions.
基金Natural Sciences and Engineering Research Council of Canada(NSERC).
文摘Smartphones typically compute position using duty-cycled Global Navigation Satellite System (GNSS) L1 code measurements and Single Point Positioning (SPP) processing with the aid of cellular and other measurements. This internal positioning solution has an accuracy of several tens to hundreds of meters in realistic environments (hand-held, vehicle dashboard, suburban, urban forested, etc.). With the advent of multi-constellation, dual-frequency GNSS chips in smartphones, along with the ability to extract raw code and carrier-phase measurements, it is possible to use Precise Point Positioning (PPP) to improve positioning without any additional equipment. This research analyses GNSS measurement quality parameters from a Xiaomi MI 8 dual-frequency smartphone in varied, realistic environments. In such environments, the system suffers from frequent phase loss-of-lock leading to data gaps. The smartphone measurements have low and irregular carrier-to-noise (C/N0) density ratio and high multipath, which leads to poor or no positioning solution. These problems are addressed by implementing a prediction technique for data gaps and a C/N0-based stochastic model for assigning realistic a priori weights to the observables in the PPP processing engine. Using these conditioning techniques, there is a 64% decrease in the horizontal positioning Root Mean Square (RMS) error and 100% positioning solution availability in sub-urban environments tested. The horizontal and 3D RMS were 20 cm and 30 cm respectively in a static open-sky environment and the horizontal RMS for the realistic kinematic scenario was 7 m with the phone on the dashboard of the car, using the SwiftNav Piksi Real-Time Kinematic (RTK) solu-tion as reference. The PPP solution, computed using the YorkU PPP engine, also had a 5-10% percentage point more availability than the RTK solution, computed using RTKLIB software, since missing measurements in the logged file cause epoch rejection and a non-continuous solution, a problem which is solved by prediction for the PPP solution. The internal unaided positioning solution of the phone obtained from the logged NMEA (The National Marine Elec-tronics Association) file was computed using point positioning with the aid of measurements from internal sensors. The PPP solution was 80% more accurate than the internal solution which had periodic drifts due to non-continuous computation of solution.