This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property i...This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property is proved by introducing certain auxiliary processes and using the Radon-Nikodym derivatives and truncation arguments. Based on these results, positive Harris recurrence and exponential ergodicity are obtained under the Foster-Lyapunov drift conditions. Finally, examples using van der Pol equations are presented for illustrations, and the corresponding Foster-Lyapunov functions for the examples are constructed explicitly.展开更多
基金Supported by the National Natural Science Foundation of China(No.11171024)the National Science Foundation,United States(No.DMS-0907753)
文摘This work focuses on stochastic Lienard equations with state-dependent switching. First, the existence and uniqueness of a strong solution are obtained by successive construction method. Next, strong Feller property is proved by introducing certain auxiliary processes and using the Radon-Nikodym derivatives and truncation arguments. Based on these results, positive Harris recurrence and exponential ergodicity are obtained under the Foster-Lyapunov drift conditions. Finally, examples using van der Pol equations are presented for illustrations, and the corresponding Foster-Lyapunov functions for the examples are constructed explicitly.