We show that a QWEP von Neumann algebra has the weak* positive approximation property if and only if it is seemingly injective in the following sense: there is a factorization of the identity of Id_(M)= vu : M→uB(H)...We show that a QWEP von Neumann algebra has the weak* positive approximation property if and only if it is seemingly injective in the following sense: there is a factorization of the identity of Id_(M)= vu : M→uB(H)→vM with u normal, unital, positive and v completely contractive. As a corollary, if M has a separable predual, M is isomorphic(as a Banach space) to B(l2). For instance this applies(rather surprisingly) to the von Neumann algebra of any free group. Nevertheless, since B(H) fails the approximation property(due to Szankowski) there are M ’s(namely B(H)^(**) and certain finite examples defined using ultraproducts) that are not seemingly injective.Moreover, for M to be seemingly injective it suffices to have the above factorization of I dM through B(H) with u, v positive(and u still normal).展开更多
In this paper, we study the rate of convergence for functions of bounded variation for the recently introduced Bzier variant of the Meyer-Knig-Zeller-Durrmeyer operators.
文摘We show that a QWEP von Neumann algebra has the weak* positive approximation property if and only if it is seemingly injective in the following sense: there is a factorization of the identity of Id_(M)= vu : M→uB(H)→vM with u normal, unital, positive and v completely contractive. As a corollary, if M has a separable predual, M is isomorphic(as a Banach space) to B(l2). For instance this applies(rather surprisingly) to the von Neumann algebra of any free group. Nevertheless, since B(H) fails the approximation property(due to Szankowski) there are M ’s(namely B(H)^(**) and certain finite examples defined using ultraproducts) that are not seemingly injective.Moreover, for M to be seemingly injective it suffices to have the above factorization of I dM through B(H) with u, v positive(and u still normal).
基金Department of Mathematics and Statistics,Auburn University,AL,USA
文摘In this paper, we study the rate of convergence for functions of bounded variation for the recently introduced Bzier variant of the Meyer-Knig-Zeller-Durrmeyer operators.