By using the reported data of lightning disaster and the data of lightning monitoring network in Shandong Province since its establishment,the lightning activities and the disaster climate characteristics in Shandong ...By using the reported data of lightning disaster and the data of lightning monitoring network in Shandong Province since its establishment,the lightning activities and the disaster climate characteristics in Shandong Province were analyzed.The data were processed by lattice formulation,and the spatial and temporal distribution characteristics of positive and negative CG flashes were given.The parameter characteristics of positive and negative ground lightning and its relationship with the lightning disasters were analyzed.And the lightning parameter characteristics of lightning in major cities of Shandong Province were analyzed.展开更多
A new lightning locating technology, called Lightning Mapping Array (LMA), has been developed. The system takes advantage of GPS technology to measure the times of arrival (TOA) of lightning impulsive very high fr...A new lightning locating technology, called Lightning Mapping Array (LMA), has been developed. The system takes advantage of GPS technology to measure the times of arrival (TOA) of lightning impulsive very high frequency (VHF) radiation events at each remote location. The spatiotemporal development processes of lightning are described in three-dimension by measurement of the system with high time resolution (50 ns) and space precision (50-100 m). The charge structures in thunderstorm and their relationship with lightning discharge processes are revealed. The temporal and spatial characteristics of preliminary breakdown process involved in negative cloud-to-ground (CG) lightning discharges are analyzed based on the data of lightning VHF radiation events. The effect of positive charge region in lower part of thunderstorm on the occurrence of negative CG lightning discharge is discussed. The results indicate that the preliminary breakdown process with longer duration in negative CG lightning discharges is an intracloud discharge process. It occurs between negative and positive charge regions located in middle and lower parts of thunderstorm respectively. It initiates from the negative charge region and propagates downward. After propagating into the positive charge region, the lightning channel develops horizontally. The characteristics of the preliminary breakdown process are consistent with that of intracloud lightning discharges. The stepped leaders are initiated by the K type breakdown which occurs in the last stage of the preliminary breakdown process and develops downward through the positive charge region. The existence of positive charge region in lower part of thunderstorm results in the occurrence of preliminary breakdown process with longer duration before the return stroke of negative CG lightning discharges.展开更多
青藏高原东北边缘地带是强对流天气多发区,雷电灾害频发。利用2017—2020年甘肃省ADTD(the advanced toa and direction system)闪电定位资料,对青藏高原东北边缘地带地闪频次、雷电流强度和地闪密度的时空分布特征进行分析,以便了解该...青藏高原东北边缘地带是强对流天气多发区,雷电灾害频发。利用2017—2020年甘肃省ADTD(the advanced toa and direction system)闪电定位资料,对青藏高原东北边缘地带地闪频次、雷电流强度和地闪密度的时空分布特征进行分析,以便了解该地区地闪活动规律。结果表明:2017—2020年青藏高原东北边缘地带年平均地闪频数为2.71万余次,负、正地闪数分别占总闪数的84.27%和15.73%。地闪数月际变化呈明显的“单峰”特征,夏季闪电活动最强,占全年70.11%;春秋次之,冬季最弱。日变化亦呈“单峰”型,总闪和负地闪峰值出现在北京时10:00—12:00,正地闪峰值比负地闪峰值滞后约1 h。4—10月月平均正地闪数远少于负地闪,但正地闪的月平均电流强度却是负地闪的1.56倍。地闪密度大于0.24次·km-2·a-1的高值区主要出现在兰州市永登县,甘南藏族自治州碌曲县南部、玛曲县的西北部和东南部及合作市一带,天水市张家川回族自治县,庆阳市华池县、环县、镇原县、庆城县,陇南市南部和文县。正地闪高发区集中出现在玛曲县和碌曲县大部、定西市与甘南州交界处及庆阳市中南部。通过对比地闪密度与降水量之间的关系,认为青藏高原东北边缘地带的闪电活动与降水量在时空分布上有较好的一致性。展开更多
Based on the Weather Research Forecasting(WRF) model that features charging and discharging parameterization,relationships between tornado, hail and lightning were investigated for a tornado-producing(EF4 intensity) s...Based on the Weather Research Forecasting(WRF) model that features charging and discharging parameterization,relationships between tornado, hail and lightning were investigated for a tornado-producing(EF4 intensity) supercell thunderstorm over Yancheng City in Jiangsu Province, China, on 23 June 2016. Based on a sounding at 0800, there was a low lifting condensation level, substantial convective available potential energy(CAPE), and strong vertical wind shear near Yancheng City, which promote supercell development. At 1400, observations revealed that hail production and a dramatic increase of positive cloud-to-ground flash rates occurred simultaneously, maximizing five minutes later. The tornado occurred 30 min after the hail production. The time of minimum positive cloud-to-ground flash rates was 15 min later. The simulation indicated that the tornadic supercell moved eastward and that positive cloud-to-ground flash rates increased dramatically at 1400, the same as observed, but their maximum was 5 min later than observed. The simulated updraft volume peaked at 1425 and the simulated downdraft volume maximized5 min later, when the mesocyclone formed. Simulated reflectivities showed no hook echo and horizontal winds for different height at mid-low levels had a different cyclonic shear at 1430, favorable to mesocyclone formation. Based on the simulated results,the region of positively charged graupel ascended resulting from the region of high liquid water content was lifted by the strong updraft, forming a mid-level strong positive charge region. A lower negative charge region formed by the inductive charging mechanism of collisions between graupel and droplets at the bottom of the cloud, conducive to positive cloud-to-ground flashes.展开更多
基金Supported by Shandong Meteorology Bureau (2005sdqxj01)Shandong Metrological Observatory (Preliminary Study on Forecast of Lightning Disasters in Shandong Province)
文摘By using the reported data of lightning disaster and the data of lightning monitoring network in Shandong Province since its establishment,the lightning activities and the disaster climate characteristics in Shandong Province were analyzed.The data were processed by lattice formulation,and the spatial and temporal distribution characteristics of positive and negative CG flashes were given.The parameter characteristics of positive and negative ground lightning and its relationship with the lightning disasters were analyzed.And the lightning parameter characteristics of lightning in major cities of Shandong Province were analyzed.
基金Supported by the Natural Science Foundation of China under Grant No.40875003the National Basic Research Program of China under No.2004CB418306the Special Development Item of the Ministry of Science and Technology of China.
文摘A new lightning locating technology, called Lightning Mapping Array (LMA), has been developed. The system takes advantage of GPS technology to measure the times of arrival (TOA) of lightning impulsive very high frequency (VHF) radiation events at each remote location. The spatiotemporal development processes of lightning are described in three-dimension by measurement of the system with high time resolution (50 ns) and space precision (50-100 m). The charge structures in thunderstorm and their relationship with lightning discharge processes are revealed. The temporal and spatial characteristics of preliminary breakdown process involved in negative cloud-to-ground (CG) lightning discharges are analyzed based on the data of lightning VHF radiation events. The effect of positive charge region in lower part of thunderstorm on the occurrence of negative CG lightning discharge is discussed. The results indicate that the preliminary breakdown process with longer duration in negative CG lightning discharges is an intracloud discharge process. It occurs between negative and positive charge regions located in middle and lower parts of thunderstorm respectively. It initiates from the negative charge region and propagates downward. After propagating into the positive charge region, the lightning channel develops horizontally. The characteristics of the preliminary breakdown process are consistent with that of intracloud lightning discharges. The stepped leaders are initiated by the K type breakdown which occurs in the last stage of the preliminary breakdown process and develops downward through the positive charge region. The existence of positive charge region in lower part of thunderstorm results in the occurrence of preliminary breakdown process with longer duration before the return stroke of negative CG lightning discharges.
文摘青藏高原东北边缘地带是强对流天气多发区,雷电灾害频发。利用2017—2020年甘肃省ADTD(the advanced toa and direction system)闪电定位资料,对青藏高原东北边缘地带地闪频次、雷电流强度和地闪密度的时空分布特征进行分析,以便了解该地区地闪活动规律。结果表明:2017—2020年青藏高原东北边缘地带年平均地闪频数为2.71万余次,负、正地闪数分别占总闪数的84.27%和15.73%。地闪数月际变化呈明显的“单峰”特征,夏季闪电活动最强,占全年70.11%;春秋次之,冬季最弱。日变化亦呈“单峰”型,总闪和负地闪峰值出现在北京时10:00—12:00,正地闪峰值比负地闪峰值滞后约1 h。4—10月月平均正地闪数远少于负地闪,但正地闪的月平均电流强度却是负地闪的1.56倍。地闪密度大于0.24次·km-2·a-1的高值区主要出现在兰州市永登县,甘南藏族自治州碌曲县南部、玛曲县的西北部和东南部及合作市一带,天水市张家川回族自治县,庆阳市华池县、环县、镇原县、庆城县,陇南市南部和文县。正地闪高发区集中出现在玛曲县和碌曲县大部、定西市与甘南州交界处及庆阳市中南部。通过对比地闪密度与降水量之间的关系,认为青藏高原东北边缘地带的闪电活动与降水量在时空分布上有较好的一致性。
基金supported by the National Natural Science Foundation of China(Grant No.41275008)the Basic Research Fund of the Chinese Academy of Meteorological Sciences(Grant No.2016Z002)the National Key Basic Research Program of China(Grant No.2014CB441403)
文摘Based on the Weather Research Forecasting(WRF) model that features charging and discharging parameterization,relationships between tornado, hail and lightning were investigated for a tornado-producing(EF4 intensity) supercell thunderstorm over Yancheng City in Jiangsu Province, China, on 23 June 2016. Based on a sounding at 0800, there was a low lifting condensation level, substantial convective available potential energy(CAPE), and strong vertical wind shear near Yancheng City, which promote supercell development. At 1400, observations revealed that hail production and a dramatic increase of positive cloud-to-ground flash rates occurred simultaneously, maximizing five minutes later. The tornado occurred 30 min after the hail production. The time of minimum positive cloud-to-ground flash rates was 15 min later. The simulation indicated that the tornadic supercell moved eastward and that positive cloud-to-ground flash rates increased dramatically at 1400, the same as observed, but their maximum was 5 min later than observed. The simulated updraft volume peaked at 1425 and the simulated downdraft volume maximized5 min later, when the mesocyclone formed. Simulated reflectivities showed no hook echo and horizontal winds for different height at mid-low levels had a different cyclonic shear at 1430, favorable to mesocyclone formation. Based on the simulated results,the region of positively charged graupel ascended resulting from the region of high liquid water content was lifted by the strong updraft, forming a mid-level strong positive charge region. A lower negative charge region formed by the inductive charging mechanism of collisions between graupel and droplets at the bottom of the cloud, conducive to positive cloud-to-ground flashes.