BACKGROUND Glycated hemoglobin A1c(HbA1c)is considered the most suitable for diabetes mellitus diagnosis due to its accuracy and convenience.However,the effect of HbA1c on diabetic retinopathy(DR)in the Han and Korean...BACKGROUND Glycated hemoglobin A1c(HbA1c)is considered the most suitable for diabetes mellitus diagnosis due to its accuracy and convenience.However,the effect of HbA1c on diabetic retinopathy(DR)in the Han and Korean populations in Jilin,China,remains inconclusive.AIM To determine the best cut-off of HbA1c for diagnosing DR among the Chinese.METHODS This cross-sectional study included 1933 participants from the Yanbian area of Jilin Province,China.Trained investigators employed a questionnaire-based survey,physical examination,laboratory tests,and fundus photography for the investigation.The best cut-off value for HbA1c was established via the receiver operating characteristic curve.The factors associated with HbA1c-associated risk factors were determined via linear regression.RESULTS The analysis included 887 eligible Chinese Han and Korean participants,591 of whom were assigned randomly to the training set and 296 to the validation set.The prevalence of DR was 3.27% in the total population.HbA1c of 6.2% was the best cut-off value in the training set,while it was 5.9% in the validation set.In both Chinese Han and Korean populations,an HbA1c level of 6.2% was the best cut-off value.The optimal cut-off values of fasting blood glucose(FBG)≥7 mmol/L and<7 mmol/L were 8.1% and 6.2% respectively in Han populations,while those in Korean populations were 6.9%and 5.3%,respectively.Age,body mass index,and FBG were determined as the risk factors impacting HbA1c levels.CONCLUSION HbA1c may serve as a useful diagnostic indicator for DR.An HbA1c level of 6.2% may be an appropriate cut-off value for DR detection in the Chinese population.展开更多
The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which e...The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.展开更多
The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0...The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.展开更多
This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones a...This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.展开更多
The transverse relaxation time (T_(2)) cut-off value plays a crucial role in nuclear magnetic resonance for identifying movable and immovable boundaries, evaluating permeability, and determining fluid saturation in pe...The transverse relaxation time (T_(2)) cut-off value plays a crucial role in nuclear magnetic resonance for identifying movable and immovable boundaries, evaluating permeability, and determining fluid saturation in petrophysical characterization of petroleum reservoirs. This study focuses on the systematic analysis of T_(2) spectra and T_(2) cut-off values in low-permeability reservoir rocks. Analysis of 36 low-permeability cores revealed a wide distribution of T_(2) cut-off values, ranging from 7 to 50 ms. Additionally, the T_(2) spectra exhibited multimodal characteristics, predominantly displaying unimodal and bimodal morphologies, with a few trimodal morphologies, which are inherently influenced by different pore types. Fractal characteristics of pore structure in fully water-saturated cores were captured through the T_(2) spectra, which were calculated using generalized fractal and multifractal theories. To augment the limited dataset of 36 cores, the synthetic minority oversampling technique was employed. Models for evaluating the T_(2) cut-off value were separately developed based on the classified T_(2) spectra, considering the number of peaks, and utilizing generalized fractal dimensions at the weight <0 and the singular intensity range. The underlying mechanism is that the singular intensity and generalized fractal dimensions at the weight <0 can detect the T_(2) spectral shift. However, the T_(2) spectral shift has negligible effects on multifractal spectrum function difference and generalized fractal dimensions at the weight >0. The primary objective of this work is to gain insights into the relationship between the kurtosis of the T_(2) spectrum and pore types, as well as to predict the T_(2) cut-off value of low-permeability rocks using machine learning and data augmentation techniques.展开更多
With the rise of various new reading media and the rapid development of the digitization of paper resources,the traditional function positioning of university libraries based on information query is facing unprecedent...With the rise of various new reading media and the rapid development of the digitization of paper resources,the traditional function positioning of university libraries based on information query is facing unprecedented challenges.How to deal with the change of social information?The library should be demand-oriented,re-examine its own value and find a new starting point.With the help of the concept of customer delivered value and based on 4P theory,this paper constructs the value chain of university library from the dimensions of product,image,personnel and service,and forms a multi-dimensional development positioning system.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(...This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.展开更多
In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fra...In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.展开更多
In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied....The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.展开更多
In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = ...In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.展开更多
The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our ...The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
In this work, we investigate the following fourth-order delay differential equation of boundary value problem with p-Laplacian(Φp(u000))0(t)+a(t)f(t, u(t?τ), u0(t))=0, 0〈t〈1;u000 (0)=u00 (0)=0,...In this work, we investigate the following fourth-order delay differential equation of boundary value problem with p-Laplacian(Φp(u000))0(t)+a(t)f(t, u(t?τ), u0(t))=0, 0〈t〈1;u000 (0)=u00 (0)=0, u0 (1)=αu0 (η);u(t)=0, ?τ ≤t≤0. By using Schauder fixed-point theorem, some su?cient conditions are obtained which guar-antee the fourth-order delay differential equation of boundary value problem with p-Laplacian has at least one positive solution. Some corresponding examples are presented to illustrate the application of our main results.展开更多
An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, ...An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.展开更多
In this paper,we are concerned with the existence of multiple positive solutions to a second-order three-point boundary value problem on the half-line.The results are obtained by the Leggett-Williams fixed point theorem.
In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point...In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results.展开更多
By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,...By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.展开更多
By using fixed-point index theory,we study boundary value problems for systems of nonlinear second-order differential equation,and a result on existence and multiplicity of positive solutions is obtained.
基金Supported by National Key R&D Program of China,No.2016YFC1305700.
文摘BACKGROUND Glycated hemoglobin A1c(HbA1c)is considered the most suitable for diabetes mellitus diagnosis due to its accuracy and convenience.However,the effect of HbA1c on diabetic retinopathy(DR)in the Han and Korean populations in Jilin,China,remains inconclusive.AIM To determine the best cut-off of HbA1c for diagnosing DR among the Chinese.METHODS This cross-sectional study included 1933 participants from the Yanbian area of Jilin Province,China.Trained investigators employed a questionnaire-based survey,physical examination,laboratory tests,and fundus photography for the investigation.The best cut-off value for HbA1c was established via the receiver operating characteristic curve.The factors associated with HbA1c-associated risk factors were determined via linear regression.RESULTS The analysis included 887 eligible Chinese Han and Korean participants,591 of whom were assigned randomly to the training set and 296 to the validation set.The prevalence of DR was 3.27% in the total population.HbA1c of 6.2% was the best cut-off value in the training set,while it was 5.9% in the validation set.In both Chinese Han and Korean populations,an HbA1c level of 6.2% was the best cut-off value.The optimal cut-off values of fasting blood glucose(FBG)≥7 mmol/L and<7 mmol/L were 8.1% and 6.2% respectively in Han populations,while those in Korean populations were 6.9%and 5.3%,respectively.Age,body mass index,and FBG were determined as the risk factors impacting HbA1c levels.CONCLUSION HbA1c may serve as a useful diagnostic indicator for DR.An HbA1c level of 6.2% may be an appropriate cut-off value for DR detection in the Chinese population.
文摘The existence of multiple positive solutions for a class of higher order p Laplacian boundary value problem is studied. By means of the Leggett Williams fixed point theorem in cones, existence criteria which ensure the existence of at least three positive solutions of the boundary value problem are established.
文摘The present paper is concerned with the existence of positive solutions of the (k,n-k) conjugate boundary value problems(-1) n-k u (h) (t)=λa(t)f(u(t)),t∈(0,1), u (i) (0)=0,0≤i≤k-1, u (j) (0)=0,0≤j≤n-k-1,where λ is a positive parmeter. Krasnoselsii’s fixed point theorem is employed to obtain the existence criteria for positive solution.
文摘This paper is concerned with the following fourth-order three-point boundary value problem , where , we discuss the existence of positive solutions to the above problem by applying to the fixed point theory in cones and iterative technique.
基金supported by National Natural Science Foundation of China(Nos.42002171,42172159)China Postdoctoral Science Foundation(Nos.2020TQ0299,2020M682520)Postdoctoral Innovation Science Foundation of Hubei Province of China.
文摘The transverse relaxation time (T_(2)) cut-off value plays a crucial role in nuclear magnetic resonance for identifying movable and immovable boundaries, evaluating permeability, and determining fluid saturation in petrophysical characterization of petroleum reservoirs. This study focuses on the systematic analysis of T_(2) spectra and T_(2) cut-off values in low-permeability reservoir rocks. Analysis of 36 low-permeability cores revealed a wide distribution of T_(2) cut-off values, ranging from 7 to 50 ms. Additionally, the T_(2) spectra exhibited multimodal characteristics, predominantly displaying unimodal and bimodal morphologies, with a few trimodal morphologies, which are inherently influenced by different pore types. Fractal characteristics of pore structure in fully water-saturated cores were captured through the T_(2) spectra, which were calculated using generalized fractal and multifractal theories. To augment the limited dataset of 36 cores, the synthetic minority oversampling technique was employed. Models for evaluating the T_(2) cut-off value were separately developed based on the classified T_(2) spectra, considering the number of peaks, and utilizing generalized fractal dimensions at the weight <0 and the singular intensity range. The underlying mechanism is that the singular intensity and generalized fractal dimensions at the weight <0 can detect the T_(2) spectral shift. However, the T_(2) spectral shift has negligible effects on multifractal spectrum function difference and generalized fractal dimensions at the weight >0. The primary objective of this work is to gain insights into the relationship between the kurtosis of the T_(2) spectrum and pore types, as well as to predict the T_(2) cut-off value of low-permeability rocks using machine learning and data augmentation techniques.
基金Supported by Key Research Project of Education and Teaching Reform in Beijing University of Agriculture from 2021 to 2022.
文摘With the rise of various new reading media and the rapid development of the digitization of paper resources,the traditional function positioning of university libraries based on information query is facing unprecedented challenges.How to deal with the change of social information?The library should be demand-oriented,re-examine its own value and find a new starting point.With the help of the concept of customer delivered value and based on 4P theory,this paper constructs the value chain of university library from the dimensions of product,image,personnel and service,and forms a multi-dimensional development positioning system.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
基金Tutorial Scientific Research Program Foundation of Education Department of Gansu Province(0710-04).
文摘This paper deals with the existence of multiple positive solutions for a class of nonlinear singular four-point boundary value problem with p-Laplacian:{(φ(u′))′+a(t)f(u(t))=0, 0〈t〈1, αφ(u(0))-βφ(u′(ξ))=0,γφ(u(1))+δφ(u′(η))0,where φ(x) = |x|^p-2x,p 〉 1, a(t) may be singular at t = 0 and/or t = 1. By applying Leggett-Williams fixed point theorem and Schauder fixed point theorem, the sufficient conditions for the existence of multiple (at least three) positive solutions to the above four-point boundary value problem are provided. An example to illustrate the importance of the results obtained is also given.
基金Supported by the Research Fund for the Doctoral Program of High Education of China(20094407110001)Supported by the NSF of Guangdong Province(10151063101000003)
文摘In this paper,we study a Dirichlet-type boundary value problem(BVP) of nonlinear fractional differential equation with an order α∈(3,4],where the fractional derivative D~α_(o^+)is the standard Riemann-Liouville fractional derivative.By constructing the Green function and investigating its properties,we obtain some criteria for the existence of one positive solution and two positive solutions for the above BVP.The Krasnosel'skii fixedpoint theorem in cones is used here.We also give an example to illustrate the applicability of our results.
文摘In this paper,the boundary value problems of p-Laplacian functional differential equation are studied.By using a fixed point theorem in cones,some criteria for the existence of positive solutions are given.
基金Supported by the Natural Science Foundation of Zhejiang Province (Y605144)the XNF of Zhejiang University of Media and Communications (XN080012008034)
文摘The existence of nondecreasing positive solutions for the nonlinear third-order twopoint boundary value problem u′″(t) + q(t)f(t,u(t),u′(t)) = 0, 0 〈 t 〈 1, u(0) = u″(0) = u′(1) = 0 is studied. The iterative schemes for approximating the solutions are obtained by applying a monotone iterative method.
基金supported by the National Natural Science Foundation of China (11071149, 10771128)the NSF of Shanxi Province (2006011002, 2010011001-1)
文摘In this article, we consider the existence of two positive solutions to nonlinear second order three-point singular boundary value problem: -u′′(t) = λf(t, u(t)) for all t ∈ (0, 1) subjecting to u(0) = 0 and αu(η) = u(1), where η ∈ (0, 1), α ∈ [0, 1), and λ is a positive parameter. The nonlinear term f(t, u) is nonnegative, and may be singular at t = 0, t = 1, and u = 0. By the fixed point index theory and approximation method, we establish that there exists λ* ∈ (0, +∞], such that the above problem has at least two positive solutions for any λ ∈ (0, λ*) under certain conditions on the nonlinear term f.
文摘The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
基金Foundation item: Supported by the National Natural Science Foundation of China(10801001) Supported by the Natural Science Foundation of Anhui Province(1208085MA13, KJ2009A005Z)
文摘In this work, we investigate the following fourth-order delay differential equation of boundary value problem with p-Laplacian(Φp(u000))0(t)+a(t)f(t, u(t?τ), u0(t))=0, 0〈t〈1;u000 (0)=u00 (0)=0, u0 (1)=αu0 (η);u(t)=0, ?τ ≤t≤0. By using Schauder fixed-point theorem, some su?cient conditions are obtained which guar-antee the fourth-order delay differential equation of boundary value problem with p-Laplacian has at least one positive solution. Some corresponding examples are presented to illustrate the application of our main results.
文摘An existence theorem of positive solution is established for a nonlinear third-order three-point boundary value problem. Here, we concentrated on the case that the nonlinear term is neither superlinear nor sublinear, and is not asymptotic at zero and infinity.
基金Supported by the NNSF of China(10871116)Supported by the NSFSP of China(ZR2010AM005)
文摘In this paper,we are concerned with the existence of multiple positive solutions to a second-order three-point boundary value problem on the half-line.The results are obtained by the Leggett-Williams fixed point theorem.
基金The NSF (11201109) of Chinathe NSF (10040606Q50) of Anhui Province+1 种基金Excellent Talents Foundation (2012SQRL165) of University of Anhui Provincethe NSF (2012kj09) of Heifei Normal University
文摘In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results.
基金Foundation item: Supported by the National Natural Science Foundation of China(10671167) Supported by the Research Foundation of Liaocheng University(31805)
文摘By applying fixed point theorem, the existence of positive solution is considered for superlinear semipositone singular m-point boundary value problem -(Lφ)(x)=(p(x)φ′(x))′+q(x)φ(x) and ξi ∈ (0,1)with 0〈ξ1〈ξ2……〈ξm-2〈1,αi ∈ R^+,f ∈C[(0,1)×R^+,R^+],f(x,φ) may be singular at x=0 and x=1,g(x):(0,1)→R is Lebesgue measurable, g may tend to negative infinity and have finitely many singularities.
基金Sponsored by the NSF of Anhui Provence(2005kj031ZD,050460103)Supported by the Teaching and Research Award Program for Excellent Teachers in Higher Education Institutions of Anhui Provence and the Key NSF of Education Ministry of China(207047)
文摘By using fixed-point index theory,we study boundary value problems for systems of nonlinear second-order differential equation,and a result on existence and multiplicity of positive solutions is obtained.