In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general in...In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.展开更多
In this paper, the nonexistence of positive entire solutions for div(|Du| p-2 Du)q(x)f(u),x∈R N, is established, where p】1,Du=(D 1u,...,D Nu),q∶R N→(0,∞) and f∶(0,∞)→(0,∞) are continuous fun...In this paper, the nonexistence of positive entire solutions for div(|Du| p-2 Du)q(x)f(u),x∈R N, is established, where p】1,Du=(D 1u,...,D Nu),q∶R N→(0,∞) and f∶(0,∞)→(0,∞) are continuous functions.展开更多
In this paper N-dimensional singular, p-Laplace equations of the following form △pu:=N↑∑↑i=1Di(|Du|^p-2Diu)=f(|x|,u,|Du|u^-β,x∈R^N(N≥3) are considered, where p≥N,β〉0,and f:[0,∞)×[0,∞)...In this paper N-dimensional singular, p-Laplace equations of the following form △pu:=N↑∑↑i=1Di(|Du|^p-2Diu)=f(|x|,u,|Du|u^-β,x∈R^N(N≥3) are considered, where p≥N,β〉0,and f:[0,∞)×[0,∞)×[0,∞)is a continuous tunctlon. Some sufficient conditions are obtained for the existence of infinitely many radially positive entire solutions of the equation which are asymptotic to positive constant multiples of |x|^(p-N)/(p-1) for p〉N or log|x| for N-p as |x|→∞.展开更多
In this paper, the existence of positive solutions for a class of quasilinear elliptic differential equation systems are established by Schauder-TychonofF fixed point theorem.
We consider the N-dimensional singular p-Laplace systems and obtain some sufficient conditions which guarantee that the system has infinitely many radial positive entire asymptotic solutions.
In this paper, we establish the existence of positive radially symmetric solutions of div(|Du|p-2Du) + λf(r,u(r) ) = 0 in domain R1 < r < R0 or 0 < r < ∞ with a variety of Dirichlet boundary conditions. ...In this paper, we establish the existence of positive radially symmetric solutions of div(|Du|p-2Du) + λf(r,u(r) ) = 0 in domain R1 < r < R0 or 0 < r < ∞ with a variety of Dirichlet boundary conditions. The function f is allowed to be singular when u = 0.展开更多
This paper investigates 2-dimensional singular,quasilinear elliptic equations and gives some suffcient conditions ensuring the equations have infinitely many positive entire solutions. The super-subsolution method is ...This paper investigates 2-dimensional singular,quasilinear elliptic equations and gives some suffcient conditions ensuring the equations have infinitely many positive entire solutions. The super-subsolution method is used to prove the existence of such solutions.展开更多
Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solut...Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solution that has finite Morse index when q 〉 qc but it admits a family of stable positive radial entire solutions when 0 〈 q ≤ qc- Proof of the stability of positive radial entire solutions of the equation when 1 〈 p 〈 2 and 0 〈 q ≤ qc relies on Caffarelli-Kohn Nirenberg's inequality. Similar Liouville type result still holds for general positive entire solutions when 2 〈 p ≤ N and q 〉 qc. The case of 1 〈 p 〈 2 is still open. Our main results imply that the structure of positive entire solutions of the equation is similar to that of the equation with p = 2 obtained previously. Some new ideas are introduced to overcome the technical difficulties arising from the p-Laplace operator.展开更多
文摘In this paper, we are concerned with positive entire solutions to elliptic equations of the form Δu+ f(x,u)= 0 x∈ RN N ≥ 3 where u →f(x,u) is not assumed to be regular near u = 0 and f(x,u) may be more general involving both singular and sublinear terms. Some sufficient conditions are given with the aid of the barrier method and ODE approach, which guarantee the existence of positive entire solutions that tend to any sufficiently large constants arbitrarily prescribed in advance.
文摘In this paper, the nonexistence of positive entire solutions for div(|Du| p-2 Du)q(x)f(u),x∈R N, is established, where p】1,Du=(D 1u,...,D Nu),q∶R N→(0,∞) and f∶(0,∞)→(0,∞) are continuous functions.
基金The work is supported by the National Natural Science Foundation of China (10271056)the Natural Science Foundation of Fujian Province (F00018).
文摘In this paper N-dimensional singular, p-Laplace equations of the following form △pu:=N↑∑↑i=1Di(|Du|^p-2Diu)=f(|x|,u,|Du|u^-β,x∈R^N(N≥3) are considered, where p≥N,β〉0,and f:[0,∞)×[0,∞)×[0,∞)is a continuous tunctlon. Some sufficient conditions are obtained for the existence of infinitely many radially positive entire solutions of the equation which are asymptotic to positive constant multiples of |x|^(p-N)/(p-1) for p〉N or log|x| for N-p as |x|→∞.
基金Project Supported by the Foundations of Henan Education Committee and Henan Science Technology Committee (984050400).
文摘In this paper, the existence of positive solutions for a class of quasilinear elliptic differential equation systems are established by Schauder-TychonofF fixed point theorem.
文摘We consider the N-dimensional singular p-Laplace systems and obtain some sufficient conditions which guarantee that the system has infinitely many radial positive entire asymptotic solutions.
文摘In this paper, we establish the existence of positive radially symmetric solutions of div(|Du|p-2Du) + λf(r,u(r) ) = 0 in domain R1 < r < R0 or 0 < r < ∞ with a variety of Dirichlet boundary conditions. The function f is allowed to be singular when u = 0.
文摘This paper investigates 2-dimensional singular,quasilinear elliptic equations and gives some suffcient conditions ensuring the equations have infinitely many positive entire solutions. The super-subsolution method is used to prove the existence of such solutions.
基金supported by NSFC(Grant Nos.11171092 and 11571093)supported by NSFC(Grant No.11371117)
文摘Positive entire solutions of the equation where 1 〈 p ≤ N, q 〉 0, are classified via their Morse indices. It is seen that there is a critical power q = qc such that this equation has no positive radial entire solution that has finite Morse index when q 〉 qc but it admits a family of stable positive radial entire solutions when 0 〈 q ≤ qc- Proof of the stability of positive radial entire solutions of the equation when 1 〈 p 〈 2 and 0 〈 q ≤ qc relies on Caffarelli-Kohn Nirenberg's inequality. Similar Liouville type result still holds for general positive entire solutions when 2 〈 p ≤ N and q 〉 qc. The case of 1 〈 p 〈 2 is still open. Our main results imply that the structure of positive entire solutions of the equation is similar to that of the equation with p = 2 obtained previously. Some new ideas are introduced to overcome the technical difficulties arising from the p-Laplace operator.