This paper considers the teleportation of quantum controlled-Not (CNOT) gate by using partially entangled states. Different from the known probability schemes, it presents a method for teleporting a CNOT gate with u...This paper considers the teleportation of quantum controlled-Not (CNOT) gate by using partially entangled states. Different from the known probability schemes, it presents a method for teleporting a CNOT gate with unit fidelity and unit probability by using two partially entangled pairs as quantum channel. The method is applicable to any two partially entangled pairs satisfying the condition that their smaller Schmidt coefficients μ and ν are (2μ + 2ν - 2μν - 1) ≥ 0. In this scheme, the sender's local generalized measurement described by a positive operator valued measurement (POVM) lies at the heart. It constructs the required POVM. It also puts forward a scheme for teleporting a CNOT with two targets gate with unit fidelity by using same quantum channel. With assistance of local operations and classical communications, three spatially separated users are able to complete the teleportation of a CNOT with two targets gate with probability of (2μ + 2ν - 1). With a proper value of μ and ν, the probability could reach nearly 1.展开更多
Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discr...Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM.展开更多
Properties of an operator representing the dynamical time in the extended parameterization invariant formulation of quantum mechanics are studied. It is shown that this time operator is given by a positive operator me...Properties of an operator representing the dynamical time in the extended parameterization invariant formulation of quantum mechanics are studied. It is shown that this time operator is given by a positive operator measure analogously to the quantities that are known to represent various measurable time operators. The relation between the dynamical time of the extended formulation and the best known example of the system time operator, i.e., for the free one- dimensional particle, is obtained.展开更多
We give a strategy for nonlocal unambiguous discrimination (UD) among N linearly independent nonorthogonal qudit states lying in a higher-dimensional Hilbert space. The procedure we use is a nonlocal positive operator...We give a strategy for nonlocal unambiguous discrimination (UD) among N linearly independent nonorthogonal qudit states lying in a higher-dimensional Hilbert space. The procedure we use is a nonlocal positive operator valued measurement (POVM) in a direct sum space. This scheme is designed for obtaining the conclusive nonlocal measurement results with a finite probability of success. We construct a quantum network for realizing the nonlocal UD with a set of two-level remote rotations, and thus provide a feasible physical means to realize the nonlocal UD.展开更多
基金Project supported by the Natural Science Foundation of Guangdong Province,China (Grant No 06029431)
文摘This paper considers the teleportation of quantum controlled-Not (CNOT) gate by using partially entangled states. Different from the known probability schemes, it presents a method for teleporting a CNOT gate with unit fidelity and unit probability by using two partially entangled pairs as quantum channel. The method is applicable to any two partially entangled pairs satisfying the condition that their smaller Schmidt coefficients μ and ν are (2μ + 2ν - 2μν - 1) ≥ 0. In this scheme, the sender's local generalized measurement described by a positive operator valued measurement (POVM) lies at the heart. It constructs the required POVM. It also puts forward a scheme for teleporting a CNOT with two targets gate with unit fidelity by using same quantum channel. With assistance of local operations and classical communications, three spatially separated users are able to complete the teleportation of a CNOT with two targets gate with probability of (2μ + 2ν - 1). With a proper value of μ and ν, the probability could reach nearly 1.
基金Project supported by the Natural Science Foundation of Guangdong Province,China(Grant Nos06029431and020127)the Natural Science Foundation of the Education Bureau of Guangdong Province,China(Grant No Z02069)
文摘Remote quantum-state discrimination is a critical step for the implementation of quantum communication network and distributed quantum computation. We present a protocol for remotely implementing the unambiguous discrimination between nonorthogonal states using quantum entanglements, local operations, and classical communications. This protocol consists of a remote generalized measurement described by a positive operator valued measurement (POVM). We explicitly construct the required remote POVM. The remote POVM can be realized by performing a nonlocal controlled-rotation operation on two spatially separated qubits, one is an ancillary qubit and the other is the qubit which is encoded by two nonorthogonal states to be distinguished, and a conventional local Von Neumann orthogonal measurement on the ancilla. The particular pair of states that can be remotely and unambiguously distinguished is specified by the state of the ancilla. The probability of successful discrimination is not optimal for all admissible pairs. However, for some subset it can be very close to an optimal value in an ordinary local POVM.
基金Project supported by the Ministry of Science and Education of the Republic of Serbia (Grant Nos. 171017, 171028, and 171006)
文摘Properties of an operator representing the dynamical time in the extended parameterization invariant formulation of quantum mechanics are studied. It is shown that this time operator is given by a positive operator measure analogously to the quantities that are known to represent various measurable time operators. The relation between the dynamical time of the extended formulation and the best known example of the system time operator, i.e., for the free one- dimensional particle, is obtained.
基金supported by the Natural Science Foundation of Guangdong Province, China (Grant No. 06029431)
文摘We give a strategy for nonlocal unambiguous discrimination (UD) among N linearly independent nonorthogonal qudit states lying in a higher-dimensional Hilbert space. The procedure we use is a nonlocal positive operator valued measurement (POVM) in a direct sum space. This scheme is designed for obtaining the conclusive nonlocal measurement results with a finite probability of success. We construct a quantum network for realizing the nonlocal UD with a set of two-level remote rotations, and thus provide a feasible physical means to realize the nonlocal UD.