叶片覆冰会严重影响风机的安全稳定运行。目前,电热防冰是最高效可靠的风机叶片防冰方法,但存在防冰区域受热不均匀、局部覆冰以及过多分区导致防冰系统过于复杂等问题。为此提出采用正温度系数(positive temperature coefficient,PTC)...叶片覆冰会严重影响风机的安全稳定运行。目前,电热防冰是最高效可靠的风机叶片防冰方法,但存在防冰区域受热不均匀、局部覆冰以及过多分区导致防冰系统过于复杂等问题。为此提出采用正温度系数(positive temperature coefficient,PTC)材料进行风机叶片自适应电加热防冰的创新方法,通过原位聚合法成功制备了一种低居里点PTC材料,其居里温度点为1℃。随后,基于该材料的阻-温特性,建立了风机叶片的电加热防冰模型,并进行数值模拟。研究结果显示,当采用低居里点PTC材料进行风机叶片电加热防冰时,无需进行防冰区域的分区,就能使得防冰区域受热更加均匀。在一定的工作电压下,低居里点PTC材料在不同环境温度和风速下展现出自适应调节加热功率的能力,并且经过100次循环阻-温测试后,材料仍具有极强的自适应调节能力。最后,通过试验验证了材料的这种自适应调节能力。该研究结果为后续基于低居里点PTC材料的风机叶片防冰系统的研究奠定了坚实基础。展开更多
Base metal nickel is often used as the inner electrode in multilayer chip positive temperature coefficient resistance (PTCR). The fine grain of ceramic powders and base metal nickel are necessary. This paper uses re...Base metal nickel is often used as the inner electrode in multilayer chip positive temperature coefficient resistance (PTCR). The fine grain of ceramic powders and base metal nickel are necessary. This paper uses reducing hydrazine to gain submicron nickel powder whose diameter was 200-300 nm through adjusting the consumption of nucleating agent PVP properly. The submicron nickel powder could disperse well and was fit for co--fired of multilayer chip PTCR. It analyes the submicron nickel powder through x-ray Diffraction (XRD) and calculates the diameter of nickel by PDF cards. Using XRD analyses it obtains several conclusions: If the molar ratio of hydrazine hydrate and nickel sulfate is kept to be a constant, when enlarging the molar ratio of NaOH/Ni^2+, the diameter of nickel powder would become smaller. When the temperature in the experiment raises to 70-80 ℃, nickel powder becomes smaller too. And if the molar ratio of NaOH/Ni2+ is 4, when molar ratio of (C2H5O)2/Ni^2+ increases, the diameter of nickel would reduce. Results from viewing the powders by optical microscope should be the fact that the electrode made by submicron nickel powder has a better formation and compactness. Furthermore, the sheet resistance testing shows that the electrode made by submicron nickel is smaller than that made by micron nickel.展开更多
BaBiO3-doped BaTiO3 (BB-BT) ceramic, as a candidate for lead-free positive temperature coefficient of resistivity (PTCR) materials with a higher Curie temperature, has been synthesized in air by a conventional sin...BaBiO3-doped BaTiO3 (BB-BT) ceramic, as a candidate for lead-free positive temperature coefficient of resistivity (PTCR) materials with a higher Curie temperature, has been synthesized in air by a conventional sintering technique. The temperature dependence of resistivity shows that the phase transition of the PTC thermistor ceramic occurs at the Curie temperature, Tc = 155℃, which is higher than that of BaTiO3 (≤ 130 ℃). Analysis of ac impedance data using complex impedance spectroscopy gives the alternate current (AC) resistance of the PTCR ceramic. By additional use of the complex electric modulus formalism to analyse the same data, the inhomogeneous nature of the ceramic may be unveiled. The impedance spectra reveal that the grain resistance of the BB-BT sample is slightly influenced by the increase of temperature, indicating that the increase in overall resistivity is entirely due to a grain-boundary effect. Based on the dependence of the extent to which the peaks of the imaginary part of electric modulus and impedance are matched on frequency, the conduction mechanism is also discussed for a BB-BT ceramic system.展开更多
The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in...The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in a targeted way,a positive temperature coefficient(PTC)material(Ba Ti O3-based compound(BT60))was selected as the filler in this paper,whose electrical resistivity has a PTC effect when the temperature exceeds its Curie temperature.The BT60 was treated with hydrogen peroxide and(3-Aminopropyl)triethoxysilane.Epoxy composites with different loadings of BT60 fillers(0 wt%,0.5 wt%,and 2 wt%of epoxy)were prepared,denoted as EP-0,EP-0.5,and EP-2.It was shown that BT60 was able to maintain the DC breakdown strength when its loading was less than 2 wt%of epoxy.As the temperature exceeds 60°C,BT60 will compensate for the negative temperature coefficient effect of epoxy resin to some extent.The electrical resistivity of EP-2 was improved by 55%compared with that of neat epoxy at 90°C.It was found that the potential barrier at the grain boundary of BT60 and the deep traps in the interface between BT60 and the epoxy resin hinder the migration of carriers and thus increase the electrical resistivity of epoxy composite.展开更多
Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT...Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT) component can remarkably increase the onset temperature T c of PTCR ceramics with the expense of the resistivity R 25 increase. CaTiO 3 (9–27 mol%) component can decrease the resistivity, and adjust the effects of BNT phase on the T c point. For the sample containing 3 mol% CaTiO 3 , T c raises from 122 ℃ to 153 ℃ when only 0.6 mol% BNT added, while for the ones with higher CaTiO 3 content (9–27 mol%), T c is only increased by a rate of 8–9℃/1.0 mol% BNT. The effects of BNT and CaTiO 3 components on R25/Rmin (negative temperature coefficient effect) are also discussed.展开更多
文摘叶片覆冰会严重影响风机的安全稳定运行。目前,电热防冰是最高效可靠的风机叶片防冰方法,但存在防冰区域受热不均匀、局部覆冰以及过多分区导致防冰系统过于复杂等问题。为此提出采用正温度系数(positive temperature coefficient,PTC)材料进行风机叶片自适应电加热防冰的创新方法,通过原位聚合法成功制备了一种低居里点PTC材料,其居里温度点为1℃。随后,基于该材料的阻-温特性,建立了风机叶片的电加热防冰模型,并进行数值模拟。研究结果显示,当采用低居里点PTC材料进行风机叶片电加热防冰时,无需进行防冰区域的分区,就能使得防冰区域受热更加均匀。在一定的工作电压下,低居里点PTC材料在不同环境温度和风速下展现出自适应调节加热功率的能力,并且经过100次循环阻-温测试后,材料仍具有极强的自适应调节能力。最后,通过试验验证了材料的这种自适应调节能力。该研究结果为后续基于低居里点PTC材料的风机叶片防冰系统的研究奠定了坚实基础。
基金Project supported by the "863" (Grant No. SQ2008AA03Z4471960)the National Natural Science Foundation of China(Grant No. 60676050)
文摘Base metal nickel is often used as the inner electrode in multilayer chip positive temperature coefficient resistance (PTCR). The fine grain of ceramic powders and base metal nickel are necessary. This paper uses reducing hydrazine to gain submicron nickel powder whose diameter was 200-300 nm through adjusting the consumption of nucleating agent PVP properly. The submicron nickel powder could disperse well and was fit for co--fired of multilayer chip PTCR. It analyes the submicron nickel powder through x-ray Diffraction (XRD) and calculates the diameter of nickel by PDF cards. Using XRD analyses it obtains several conclusions: If the molar ratio of hydrazine hydrate and nickel sulfate is kept to be a constant, when enlarging the molar ratio of NaOH/Ni^2+, the diameter of nickel powder would become smaller. When the temperature in the experiment raises to 70-80 ℃, nickel powder becomes smaller too. And if the molar ratio of NaOH/Ni2+ is 4, when molar ratio of (C2H5O)2/Ni^2+ increases, the diameter of nickel would reduce. Results from viewing the powders by optical microscope should be the fact that the electrode made by submicron nickel powder has a better formation and compactness. Furthermore, the sheet resistance testing shows that the electrode made by submicron nickel is smaller than that made by micron nickel.
基金supported by the Research Funds of the Guangxi Key Laboratory of Information Materials at the School of Material Science and Engineering,China (Grant No. 0710908-07-Z)
文摘BaBiO3-doped BaTiO3 (BB-BT) ceramic, as a candidate for lead-free positive temperature coefficient of resistivity (PTCR) materials with a higher Curie temperature, has been synthesized in air by a conventional sintering technique. The temperature dependence of resistivity shows that the phase transition of the PTC thermistor ceramic occurs at the Curie temperature, Tc = 155℃, which is higher than that of BaTiO3 (≤ 130 ℃). Analysis of ac impedance data using complex impedance spectroscopy gives the alternate current (AC) resistance of the PTCR ceramic. By additional use of the complex electric modulus formalism to analyse the same data, the inhomogeneous nature of the ceramic may be unveiled. The impedance spectra reveal that the grain resistance of the BB-BT sample is slightly influenced by the increase of temperature, indicating that the increase in overall resistivity is entirely due to a grain-boundary effect. Based on the dependence of the extent to which the peaks of the imaginary part of electric modulus and impedance are matched on frequency, the conduction mechanism is also discussed for a BB-BT ceramic system.
基金support from National Natural Science Foundation of China(No.51977186)the China Postdoctoral Science Foundation(No.2019M650029)+3 种基金the Young Elite Scientists Sponsorship Program by CAST(No.2018QNRC001)the National Key R&D Program of China(No.2017YFB0902704)the State Key Development Program of Basic Research of China(973 Program)(No.2014CB239501)the Science and Technology Project of the State Grid Corp.of China(No.52110418001Y).
文摘The DC electrical resistivity-temperature characteristic is an important property for insulating materials to operate at a high stress level.In order to improve the DC electrical resistivity at elevated temperature in a targeted way,a positive temperature coefficient(PTC)material(Ba Ti O3-based compound(BT60))was selected as the filler in this paper,whose electrical resistivity has a PTC effect when the temperature exceeds its Curie temperature.The BT60 was treated with hydrogen peroxide and(3-Aminopropyl)triethoxysilane.Epoxy composites with different loadings of BT60 fillers(0 wt%,0.5 wt%,and 2 wt%of epoxy)were prepared,denoted as EP-0,EP-0.5,and EP-2.It was shown that BT60 was able to maintain the DC breakdown strength when its loading was less than 2 wt%of epoxy.As the temperature exceeds 60°C,BT60 will compensate for the negative temperature coefficient effect of epoxy resin to some extent.The electrical resistivity of EP-2 was improved by 55%compared with that of neat epoxy at 90°C.It was found that the potential barrier at the grain boundary of BT60 and the deep traps in the interface between BT60 and the epoxy resin hinder the migration of carriers and thus increase the electrical resistivity of epoxy composite.
基金Project supported by the SPAT of Shanghai Committee of Chinese People's Political Consultative Conference and Shanghai Education Development Foundation (Grant No.2008012)
文摘Y^3+-doped (Bi 1/2 Na 1/2) TiO 3-CaTiO 3-BaTiO 3 (BNCBT) positive temperature coefficient of resistivity (PTCR) ceramics sintered in air atmosphere were investigated in this study. (Bi 1/2 Na 1/2) TiO 3 (BNT) component can remarkably increase the onset temperature T c of PTCR ceramics with the expense of the resistivity R 25 increase. CaTiO 3 (9–27 mol%) component can decrease the resistivity, and adjust the effects of BNT phase on the T c point. For the sample containing 3 mol% CaTiO 3 , T c raises from 122 ℃ to 153 ℃ when only 0.6 mol% BNT added, while for the ones with higher CaTiO 3 content (9–27 mol%), T c is only increased by a rate of 8–9℃/1.0 mol% BNT. The effects of BNT and CaTiO 3 components on R25/Rmin (negative temperature coefficient effect) are also discussed.