This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)...This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.展开更多
In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This st...In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This study focuses on surface coating with NiTiO_(3) achieved via secondary heat treatment using a coating precursor and the surface material.Through in-situ x-ray diffraction(XRD)and differential electrochemical mass spectrometry(DEMS),along with crystal structure characterizations of post-cycling materials,it was determined that the NiTiO_(3) coating layer facilitates the formation of a stable lattice structure,effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte.This enhancement in cycling stability was evidenced by a capacity retention of approximately 74%over 300 cycles at 1 C,marking a significant 30%improvement over the initial sample.Furthermore,notable advancements in rate performance were observed.Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase,presenting a novel approach for designing layered oxide cathodes with higher energy density.展开更多
The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(...The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(LLO)materials inherently excel.However,these materials face practical challenges,such as low initial Coulombic efficiency,inferior cycle/rate performance,and voltage decline during cycling,which limit practical application.Our study introduces a surface multi-component integration strategy that incorporates oxygen vacancies into the pristine LLO material Li1.2Mn_(0.6)Ni_(0.2)O_(2).This process involves a brief citric acid treatment followed by calcination,aiming to explore rate-dependent degradation behavior.The induced surface oxygen vacancies can reduce surface oxygen partial pressure and diminish the generation of O_(2)and other highly reactive oxygen species on the surface,thereby facilitating the activation of Li ions trapped in tetrahedral sites while overcoming transport barriers.Additionally,the formation of a spinel-like phase with 3D Li+diffusion channels significantly improves Li^(+)diffusion kinetics and stabilizes the surface structure.The optimally modified sample boasts a discharge capacity of 299.5 mA h g^(-1)at a 0.1 C and 251.6 mA h g^(-1)at a 1 C during the initial activation cycle,with an impressive capacity of 222.1 mA h g^(-1)at a 5 C.Most notably,it retained nearly 70%of its capacity after 300 cycles at this elevated rate.This straightforward,effective,and highly viable modification strategy provides a crucial resolution for overcoming challenges associated with LLO materials,making them more suitable for practical application.展开更多
This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit pow...This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.展开更多
The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate per...The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.展开更多
Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rat...Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.展开更多
To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves ...To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves in a more practical model and address the relationship between the cylinder damage degree and the surface and surrounding medium. The principal motivation is to perform a detailed quantitative analysis of the longitudinal mode and flexural mode in an elastic cylinder wrapped with a porous medium immersed in fluid. The frequency equations for the propagation of waves are derived each for a pervious surface and an impervious surface by employing Biot theory. The influences of the various parameters of the porous medium wrapping layer on the phase velocity and attenuation are discussed. The results show that the influences of porosity on the dispersion curves of guided waves are much more significant than those of thickness,whereas the phase velocity is independent of the static permeability. There is an apparent “mode switching” between the two low-order modes. The characteristics of attenuation are in good agreement with the results from the dispersion curves.This work can support future studies for optimizing the theory on detecting the damage to cylinder or pipeline.展开更多
Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(...Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(ML)thickness,were carried out.Calculations showed that band gaps of 1.02 eV,0.98 eV and 0.5 eV,respectively,appear in the densities of electronic states when the thickness of Li,Be and Al coverings is one ML.These gaps disappear with increasing thickness of the metal layers:first in the Li-Si system(for two ML),then in the Al-Si system(for three ML)and then in the Be-Si system(for four ML).This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.In common the results can be interpreted as describing the possibility of the formation of a two-dimensional silicide with semiconducting properties in Li-Si(100),Be-Si(100)and Al-Si(100)systems.展开更多
Double glow plasma surface metallurgy technique was used to fabricate a Fe?Al?Cr?Nb alloyed layer onto the surface of the 45 steel. The microstructures and composition of th?eA Fl?eCr?Nb alloyed layer were analyzed by...Double glow plasma surface metallurgy technique was used to fabricate a Fe?Al?Cr?Nb alloyed layer onto the surface of the 45 steel. The microstructures and composition of th?eA Fl?eCr?Nb alloyed layer were analyzed by scanning electronic microscopy, X-ray diffraction and energy dispersive spectroscopy. The results indicate thatthe 20 μm alloyed layer is homogeneous and compact. The alloyed elements exhibit a gradient distribution along the cross section. Microhardness and nanoindentation tests imply that the surface hardness of the alloyed layer reaches HV 580, which is almost 2.8 times that of the substrate. Compared with the substrate, the alloyed layer has a much smaller displacement and a larger elastic modulus. According to the friction and wear tests at room temperature, the? FeAl?Cr?Nb alloyed layer has lower friction coefficient and less wear mass, implying that the Fe?Al?Cr?Nb alloyed layer can effectively improve the surface hardness and wear resistance of the substrate.展开更多
The concentrations, accumulation and sources of 15 polycyclic aromatic hydrocarbons (PAHs) had been studied or evaluated in the surface layer sediments of Taizhou Bay, China. It showed that the concentrations of PAH...The concentrations, accumulation and sources of 15 polycyclic aromatic hydrocarbons (PAHs) had been studied or evaluated in the surface layer sediments of Taizhou Bay, China. It showed that the concentrations of PAHs ranged from 85.4 to 167.6 ng/g (averaged 138.62 ng/g), and the highest level was found in Jiao Jiang Dock. Percentages of 2-, 3-, 4-, 5- and 6-cyclic aromatic hydrocarbons were 7.8 %, 42.1%, 33.3 %, 9.6 % and 7.2 % respectively. The accumulation indices of PAHs ranged from 532.7 to 1068.9 (averaged 807.5), and the index of Phenanthrene was the highest (122.7), while that of Benzo (a) Pyrene was the lowest (2.7) among them. In Taizhou Bay, PAHs in surface layer sediments came mainly from coal burning, partly from direct pollution of petroleum hydrocarbons.展开更多
[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Metho...[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Method] Tobacco variety ‘Yunyan87’ was used as the experimental material to investigate the effects of salinity accumulation in surface layer of tobacco-planted paddy soil on the growth and development of flue-cured tobacco using different types of potassium fertilizer and mulching cultivation methods. [Result] The results showed that K+ , Ca2+ , SO42and NO3-were the major salt ions in topsoil at different growth stages of flue-cured tobacco, Na + and Mg2+ contents were also relatively high at vigorous growth stage, indicating that these salt ions were easily accumulated in surface layer of soil; to be specific, the absolute increase of salt ion concentration showed a decreasing order of K+ SO42- NO3-Ca2+ Mg2+ Na+ Cl-, while the relative increase of salt ion concentration showed a decreasing order of Ca2+ K+ Na+ NO3-SO42-Mg2+ Cl-. At 60 d posttransplanting, total salt content in topsoil reached the minimum of 359.1 mg/kg in Treatment 2, total salt content in topsoil reached the maximum of 536.1 mg/kg in Treatment 5 (CK), which was significantly higher than that in other treatments. At 90 d post-transplanting, no significant difference was observed in total salt content among various treatments. At harvesting period, total salt content in topsoil reached the maximum of 3 278.4 mg/kg in Treatment 1, which was significantly higher than that in other treatments. Topsoil pH showed no significant differences among various treatments at three different periods, ranging from 5.39 to 5.59. Straw covering could effectively reduce salt content in topsoil, accelerate vigorous growth of tobacco, shorten vigorous growth period and increase plant height, leaf number and lead area; at vigorous growth stage, root vitality and root volume of tobacco were improved, but the yield and output value were relatively low. Major agronomic traits and yield of tobacco showed no significant difference among various treatments. Output value of tobacco reached the maximum of 24 196.8 yuan/hm2 in Treatment 3, which was significantly higher than that in other treatments. [Conclusion] Appropriate types and proportions of potassium fertilizer and straw covering can effectively reduce the total salt content in tobacco-planted paddy soil and increase the effective supply amount of K+ , Ca2+ , SO42-and NO3-, thereby promoting and improving the root vitality of tobacco, which is conducive to the growth and development of tobacco and will eventually enhance the yield, quality and economic benefits of flue-cured tobacco.展开更多
Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by inte...Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by interfacial instability with electrolytes under high voltage for long cyclic life.Herein,by combining both firstprinciple calculations and time-of-flight secondary ion mass spectrometry(TOF-SIMS),a novel surface fluorinated reconstruction(SFR)mechanism is proposed to improve the interfacial stability under high voltage,which could effectively regulate the surface fluoride species to desensitize the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)interface.We demonstrate here that by tuning the ratio of fluoride species,the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)/Li battery could achieve excellent long-term and high voltage performance(163.5 mA h g^(-1)at 0.5 C for 300 cycles under 4.4 V),while the controlled sample decayed to 125.4 mA h g^(-1)after 300 cycles.Moreover,the favorable cross-talk effect induced by SFR further facilitates the incorporation of suitable amounts of Ni ions into the construction of stable solid electrolyte interface(SEI)layer for anode surface.Therefore,the ultra-long cycling stability under high voltage can be achieved by the robust cathode/electrolyte and Li/electrolyte interfaces,which results in excellent interfacial stability after long cycling.This work provides new insights into the surface design of cathode materials and improves the stability of the electrode-electrode interface under high voltage.展开更多
For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatme...For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.展开更多
This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary la...This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.展开更多
The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL)...The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.展开更多
Based on specific geology and mining conditions of certain coal working face in China, a series of numerical models under different unconsolidated layers thickness were respectively established by employing FLAC3D. Th...Based on specific geology and mining conditions of certain coal working face in China, a series of numerical models under different unconsolidated layers thickness were respectively established by employing FLAC3D. The relationship between the unconsolidated layers thickness and surface movement laws was studied. Maximum surface subsidence, Maximum horizontal displacement and surface subsidence degree were obtained. Contours of surface subsidence/horizontal displacement and curves were drawn. Some laws of surface subsidence/horizontal displacement were analyzed. The role of the unconsolidated layers in surface subsidence was revealed. It is significant to predict surface subsidence of thick unconsolidated layers for coal mine and take effective measures to control surface subsidence.展开更多
The propagation of surface acoustic waves in layered piezoelectric structureswith initial stresses is investigated. The phase velocity equations are obtained for electricallyfree and shorted cases, respectively. Effec...The propagation of surface acoustic waves in layered piezoelectric structureswith initial stresses is investigated. The phase velocity equations are obtained for electricallyfree and shorted cases, respectively. Effects of the initial stresses on the phase velocity and theelectromechanical coupling coefficient for the fundamental mode of the layered piezoelectricstructures are discussed. Numerical results for the c-axis oriented film of LiNbO_3 on a sapphiresubstrate are given. It is found that the fractional change in phase velocity is a linear functionwith the initial stresses, and the electromechanical coupling factor increases with an increase ofthe absolute values of the compressive initial stresses. The results are useful for the design ofsurface acoustic wave devices.展开更多
In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on...In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.展开更多
As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in t...As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in the equatorial Pacific using outputs from Beijing Normal University Earth System Model (BNU-ESM) simulations. A comparison between observations and the BNU-ESM simulations demonstrated that BNU-ESM has good capability in reproducing most of the interannual features observed in nature. Despite some discrepancies in both magnitude and location of the interannual variability centers, the displacements of sea surface salinity (SSS), barrier layer thickness (BLT), and SST simulated by BNU-ESM in the equatorial Pacific are realistic. During E1 Nifio, for example, the modeled interannual anomalies of BLT, mixed layer depth, and isothermal layer depth, exhibit good correspondence with observations, including the development and decay of E1 Nifio in the central Pacific, whereas the intensity of the interannual variabilities is weaker relative to observations. Due to the bias in salinity simulations, the SSS front extends farther west along the equator, whereas BLT variability is weaker in the central Pacific than in observations. Further, the BNU-ESM simulations were examined to assess the relative effects of salinity and temperature variability on BLT. Consistent with previous observation-based analyses, the interannual salinity variability can make a significant contribution to BLT relative to temperature in the western-central equatorial Pacific.展开更多
Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosi...Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosis of Gussian shape distribution curves were studied and the effect of time was determined.The usage of longer time is more suitable for achieving less size of complex nano-carbides.Surface roughness of treated samples was measured.It is observed that there is an optimum level for time on surface roughness increasing(difference between two measured data).展开更多
基金supported by the National Natural Science Foundation of China(Grant No.42176015)the National Natural Science Foundation of China(Grant No.41605070)+3 种基金the National Key Research and Development Program(Grant No.2021YFC3101500)the Hunan Provincial Natural Science Outstanding Youth Fund(Grant No.2023JJ10053)the Innovation Group Project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.311022001)a project of the Southern Marine Science and Engineering Guangdong Laboratory(Zhuhai)(Grant No.SML2021SP207)。
文摘This study investigates the impact of the salinity barrier layer(BL)on the upper ocean response to Super Typhoon Mangkhut(2018)in the western North Pacific.After the passage of Mangkhut,a noticeable increase(~0.6 psu)in sea surface salinity and a weak decrease(<1℃)in sea surface temperature(SST)were observed on the right side of the typhoon track.Mangkhut-induced SST change can be divided into the three stages,corresponding to the variations in BL thickness and SST before,during,and after the passage of Mangkhut.During the pre-typhoon stage,SST slightly warmed due to the entrainment of BL warm water,which suppressed the cooling induced by surface heat fluxes and horizontal advection.During the forced stage,SST cooling was controlled by entrainment,and the preexisting BL reduced the total cooling by 0.89℃ d-1,thus significantly weakening the overall SST cooling induced by Mangkhut.During the relaxation stage,the SST cooling was primarily caused by the entrainment.Our results indicate that a preexisting BL can limit typhoon-induced SST cooling by suppressing the entrainment of cold thermocline water,which contributed to Mangkhut becoming the strongest typhoon in 2018.
基金Project supported by the National Key R&D Program of China (Grant No.2022YFB2402500)the National Natural Science Foundation of China (Grant Nos.52122214,92372116,and 52394174)+2 种基金Youth Innovation Promotion Association of the Chinese Academy of Sciences (Grant No.2020006)Jiangsu Province Carbon Peak and Neutrality Innovation Program (Industry tackling on prospect and key technology BE2022002-5)Guangxi Power Grid Project (Grant No.GXKJXM20210260)。
文摘In Na-ion batteries,O3-type layered oxide cathode materials encounter challenges such as particle cracking,oxygen loss,electrolyte side reactions,and multi-phase transitions during the charge/discharge process.This study focuses on surface coating with NiTiO_(3) achieved via secondary heat treatment using a coating precursor and the surface material.Through in-situ x-ray diffraction(XRD)and differential electrochemical mass spectrometry(DEMS),along with crystal structure characterizations of post-cycling materials,it was determined that the NiTiO_(3) coating layer facilitates the formation of a stable lattice structure,effectively inhibiting lattice oxygen loss and reducing side reaction with the electrolyte.This enhancement in cycling stability was evidenced by a capacity retention of approximately 74%over 300 cycles at 1 C,marking a significant 30%improvement over the initial sample.Furthermore,notable advancements in rate performance were observed.Experimental results indicate that a stable and robust surface structure substantially enhances the overall stability of the bulk phase,presenting a novel approach for designing layered oxide cathodes with higher energy density.
基金supported by the National Key R&D Program of China(2021YFB2401800)the National Natural Science Foundation of China(21875022,22179008)+4 种基金the Yibin‘Jie Bang Gua Shuai’(2022JB004)the support from the Beijing Nova Program(20230484241)the support from the Postdoctoral Fellowship Program of CPSF(GZB20230931)the support from the 4B7B beam line of Beijing Synchrotron Radiation Facility(2021-BEPC-PT-005924,2021-BEPC-PT-005967)BL08U1A beam line of Shanghai Synchrotron Radiation Facility(2021-SSRF-PT-017710)。
文摘The rapid development of electric vehicles and portable energy storage systems demands improvements in the energy density and cost-effectiveness of lithium-ion batteries,a domain in which Lithium-rich layered cathode(LLO)materials inherently excel.However,these materials face practical challenges,such as low initial Coulombic efficiency,inferior cycle/rate performance,and voltage decline during cycling,which limit practical application.Our study introduces a surface multi-component integration strategy that incorporates oxygen vacancies into the pristine LLO material Li1.2Mn_(0.6)Ni_(0.2)O_(2).This process involves a brief citric acid treatment followed by calcination,aiming to explore rate-dependent degradation behavior.The induced surface oxygen vacancies can reduce surface oxygen partial pressure and diminish the generation of O_(2)and other highly reactive oxygen species on the surface,thereby facilitating the activation of Li ions trapped in tetrahedral sites while overcoming transport barriers.Additionally,the formation of a spinel-like phase with 3D Li+diffusion channels significantly improves Li^(+)diffusion kinetics and stabilizes the surface structure.The optimally modified sample boasts a discharge capacity of 299.5 mA h g^(-1)at a 0.1 C and 251.6 mA h g^(-1)at a 1 C during the initial activation cycle,with an impressive capacity of 222.1 mA h g^(-1)at a 5 C.Most notably,it retained nearly 70%of its capacity after 300 cycles at this elevated rate.This straightforward,effective,and highly viable modification strategy provides a crucial resolution for overcoming challenges associated with LLO materials,making them more suitable for practical application.
基金supported in part by National Natural Science Foundation of China under Grant 62371004 and Grant 62301005in part by the University Synergy Innovation Program of Anhui Province under Grant GXXT-2022-055+1 种基金in part by the Natural Science Foundation of Anhui Province under Grant 2308085QF197in part by the Natural Science Research Project of Education Department of Anhui Province of China under Grant 2023AH051031。
文摘This work employs intelligent reflecting surface(IRS)to enhance secure and covert communication performance.We formulate an optimization problem to jointly design both the reflection beamformer at IRS and transmit power at transmitter Alice in order to optimize the achievable secrecy rate at Bob subject to a covertness constraint.We first develop a Dinkelbach-based algorithm to achieve an upper bound performance and a high-quality solution.For reducing the overhead and computational complexity of the Dinkelbach-based scheme,we further conceive a low-complexity algorithm in which analytical expression for the IRS reflection beamforming is derived at each iteration.Examination result shows that the devised low-complexity algorithm is able to achieve similar secrecy rate performance as the Dinkelbach-based algorithm.Our examination also shows that introducing an IRS into the considered system can significantly improve the secure and covert communication performance relative to the scheme without IRS.
基金financially supported by the Australian Research Council(ARC) through the Future Fellowship(FT180100705)the financial support from China Scholarship Council+3 种基金the support from UTS-HUST Key Technology Partner Seed Fundthe support from Open Project of State Key Laboratory of Advanced Special Steel,the Shanghai Key Laboratory of Advanced Ferrometallurgy,Shanghai University(SKLASS 2021-04)the Science and Technology Commission of Shanghai Municipality(22010500400)“Joint International Laboratory on Environmental and Energy Frontier Materials”and“Innovation Research Team of High–Level Local Universities in Shanghai”in Shanghai University。
文摘The widespread interest in layered P2-type Mn-based cathode materials for sodium-ion batteries(SIBs)stems from their cost-effectiveness and abundant resources.However,the inferior cycle stability and mediocre rate performance impede their further development in practical applications.Herein,we devised a wet chemical precipitation method to deposit an amorphous aluminum phosphate(AlPO_(4),denoted as AP)protective layer onto the surface of P2-type Na_(0.55)Ni_(0.1)Co_(0.7)Mn_(0.8)O_(2)(NCM@AP).The resulting NCM@5AP electrode,with a 5 wt%coating,exhibits extended cycle life(capacity retention of78.4%after 200 cycles at 100 mA g^(-1))and superior rate performance(98 mA h g^(-1)at 500 mA g^(-1))compared to pristine NCM.Moreover,our investigation provides comprehensive insights into the phase stability and active Na^(+)ion kinetics in the NCM@5AP composite electrode,shedding light on the underlying mechanisms responsible for the enhanced performance observed in the coated electrode.
基金financially supported by the Natural Science Foundation of Shandong Province(ZR2022QB166,ZR2020KE032)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA22010600)+3 种基金the Youth Innovation Promotion Association of CAS(2021210)the Foundation of Qingdao Postdoctoral Application Program(Y63302190F)the Natural Science Foundation of Qingdao Institute ofBioenergy and Bioprocess Technology(QIBEBT SZ202101)support from the Max Planck-POSTECH-Hsinchu Center for Complex Phase Materials
文摘Full concentration gradient lithium-rich layered oxides are catching lots of interest as the next generation cathode for lithium-ion batteries due to their high discharge voltage,reduced voltage decay and enhanced rate performance,whereas the high lithium residues on its surface impairs the structure stability and long-term cycle performance.Herein,a facile multifunctional surface modification method is implemented to eliminate surface lithium residues of full concentration gradient lithium-rich layered oxides by a wet chemistry reaction with tetrabutyl titanate and the post-annealing process.It realizes not only a stable Li_(2)TiO_(3)coating layer with 3D diffusion channels for fast Li^(+)ions transfer,but also dopes partial Ti^(4+)ions into the sub-surface region of full concentration gradient lithium-rich layered oxides to further strengthen its crystal structure.Consequently,the modified full concentration gradient lithium-rich layered oxides exhibit improved structure stability,elevated thermal stability with decomposition temperature from 289.57℃to 321.72℃,and enhanced cycle performance(205.1 mAh g^(-1)after 150 cycles)with slowed voltage drop(1.67 mV per cycle).This work proposes a facile and integrated modification method to enhance the comprehensive performance of full concentration gradient lithium-rich layered oxides,which can facilitate its practical application for developing higher energy density lithium-ion batteries.
基金Project supported by the National Natural Science Foundation of China (Grant No.12174085)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China (Grant No.KYCX21_0478)。
文摘To study the damage to an elastic cylinder immersed in fluid, a model of an elastic cylinder wrapped with a porous medium immersed in fluid is designed. This structure can both identify the properties of guided waves in a more practical model and address the relationship between the cylinder damage degree and the surface and surrounding medium. The principal motivation is to perform a detailed quantitative analysis of the longitudinal mode and flexural mode in an elastic cylinder wrapped with a porous medium immersed in fluid. The frequency equations for the propagation of waves are derived each for a pervious surface and an impervious surface by employing Biot theory. The influences of the various parameters of the porous medium wrapping layer on the phase velocity and attenuation are discussed. The results show that the influences of porosity on the dispersion curves of guided waves are much more significant than those of thickness,whereas the phase velocity is independent of the static permeability. There is an apparent “mode switching” between the two low-order modes. The characteristics of attenuation are in good agreement with the results from the dispersion curves.This work can support future studies for optimizing the theory on detecting the damage to cylinder or pipeline.
文摘Within the framework of the density functional theory and the pseudopotential method,the electronic structure calculations of the“metal-Si(100)”systems with Li,Be and Al as metal coverings of one to four monolayers(ML)thickness,were carried out.Calculations showed that band gaps of 1.02 eV,0.98 eV and 0.5 eV,respectively,appear in the densities of electronic states when the thickness of Li,Be and Al coverings is one ML.These gaps disappear with increasing thickness of the metal layers:first in the Li-Si system(for two ML),then in the Al-Si system(for three ML)and then in the Be-Si system(for four ML).This behavior of the band gap can be explained by the passivation of the substrate surface states and the peculiarities of the electronic structure of the adsorbed metals.In common the results can be interpreted as describing the possibility of the formation of a two-dimensional silicide with semiconducting properties in Li-Si(100),Be-Si(100)and Al-Si(100)systems.
基金Project(51371097)supported by the National Natural Science Foundation of ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Double glow plasma surface metallurgy technique was used to fabricate a Fe?Al?Cr?Nb alloyed layer onto the surface of the 45 steel. The microstructures and composition of th?eA Fl?eCr?Nb alloyed layer were analyzed by scanning electronic microscopy, X-ray diffraction and energy dispersive spectroscopy. The results indicate thatthe 20 μm alloyed layer is homogeneous and compact. The alloyed elements exhibit a gradient distribution along the cross section. Microhardness and nanoindentation tests imply that the surface hardness of the alloyed layer reaches HV 580, which is almost 2.8 times that of the substrate. Compared with the substrate, the alloyed layer has a much smaller displacement and a larger elastic modulus. According to the friction and wear tests at room temperature, the? FeAl?Cr?Nb alloyed layer has lower friction coefficient and less wear mass, implying that the Fe?Al?Cr?Nb alloyed layer can effectively improve the surface hardness and wear resistance of the substrate.
文摘The concentrations, accumulation and sources of 15 polycyclic aromatic hydrocarbons (PAHs) had been studied or evaluated in the surface layer sediments of Taizhou Bay, China. It showed that the concentrations of PAHs ranged from 85.4 to 167.6 ng/g (averaged 138.62 ng/g), and the highest level was found in Jiao Jiang Dock. Percentages of 2-, 3-, 4-, 5- and 6-cyclic aromatic hydrocarbons were 7.8 %, 42.1%, 33.3 %, 9.6 % and 7.2 % respectively. The accumulation indices of PAHs ranged from 532.7 to 1068.9 (averaged 807.5), and the index of Phenanthrene was the highest (122.7), while that of Benzo (a) Pyrene was the lowest (2.7) among them. In Taizhou Bay, PAHs in surface layer sediments came mainly from coal burning, partly from direct pollution of petroleum hydrocarbons.
基金Supported by Project of Guangdong Zhongyan Industry Limited Liability Company[YYG15JO-QK(2011)-004]~~
文摘[Objective] This study aimed to investigation the effects of straw covering and different types of potassium fertilizer on salinity accumulation in surface layer of tobacco-planted paddy soil in southern China. [Method] Tobacco variety ‘Yunyan87’ was used as the experimental material to investigate the effects of salinity accumulation in surface layer of tobacco-planted paddy soil on the growth and development of flue-cured tobacco using different types of potassium fertilizer and mulching cultivation methods. [Result] The results showed that K+ , Ca2+ , SO42and NO3-were the major salt ions in topsoil at different growth stages of flue-cured tobacco, Na + and Mg2+ contents were also relatively high at vigorous growth stage, indicating that these salt ions were easily accumulated in surface layer of soil; to be specific, the absolute increase of salt ion concentration showed a decreasing order of K+ SO42- NO3-Ca2+ Mg2+ Na+ Cl-, while the relative increase of salt ion concentration showed a decreasing order of Ca2+ K+ Na+ NO3-SO42-Mg2+ Cl-. At 60 d posttransplanting, total salt content in topsoil reached the minimum of 359.1 mg/kg in Treatment 2, total salt content in topsoil reached the maximum of 536.1 mg/kg in Treatment 5 (CK), which was significantly higher than that in other treatments. At 90 d post-transplanting, no significant difference was observed in total salt content among various treatments. At harvesting period, total salt content in topsoil reached the maximum of 3 278.4 mg/kg in Treatment 1, which was significantly higher than that in other treatments. Topsoil pH showed no significant differences among various treatments at three different periods, ranging from 5.39 to 5.59. Straw covering could effectively reduce salt content in topsoil, accelerate vigorous growth of tobacco, shorten vigorous growth period and increase plant height, leaf number and lead area; at vigorous growth stage, root vitality and root volume of tobacco were improved, but the yield and output value were relatively low. Major agronomic traits and yield of tobacco showed no significant difference among various treatments. Output value of tobacco reached the maximum of 24 196.8 yuan/hm2 in Treatment 3, which was significantly higher than that in other treatments. [Conclusion] Appropriate types and proportions of potassium fertilizer and straw covering can effectively reduce the total salt content in tobacco-planted paddy soil and increase the effective supply amount of K+ , Ca2+ , SO42-and NO3-, thereby promoting and improving the root vitality of tobacco, which is conducive to the growth and development of tobacco and will eventually enhance the yield, quality and economic benefits of flue-cured tobacco.
基金supported by the National Natural Science Foundation of China(22209012,52072036)the fellowship of China Postdoctoral Science Foundation(2020M680374)。
文摘Ni-rich layered oxides(LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2))show great potential in long-range and low-cost lithiumion batteries.However,due to the high surface sensitivity,their practical application is hindered by interfacial instability with electrolytes under high voltage for long cyclic life.Herein,by combining both firstprinciple calculations and time-of-flight secondary ion mass spectrometry(TOF-SIMS),a novel surface fluorinated reconstruction(SFR)mechanism is proposed to improve the interfacial stability under high voltage,which could effectively regulate the surface fluoride species to desensitize the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)interface.We demonstrate here that by tuning the ratio of fluoride species,the LiNi_(0.9)Co_(0.05)Mn_(0.05)O_(2)/Li battery could achieve excellent long-term and high voltage performance(163.5 mA h g^(-1)at 0.5 C for 300 cycles under 4.4 V),while the controlled sample decayed to 125.4 mA h g^(-1)after 300 cycles.Moreover,the favorable cross-talk effect induced by SFR further facilitates the incorporation of suitable amounts of Ni ions into the construction of stable solid electrolyte interface(SEI)layer for anode surface.Therefore,the ultra-long cycling stability under high voltage can be achieved by the robust cathode/electrolyte and Li/electrolyte interfaces,which results in excellent interfacial stability after long cycling.This work provides new insights into the surface design of cathode materials and improves the stability of the electrode-electrode interface under high voltage.
基金financialy supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.22075331,51702376)+2 种基金the Fundamental Research Funds for the Central Universities(19lgzd02)the Guangdong Pearl River Talents Plan(2019QN01L117)the National Thousand Youth Talents Project of the Chinese Government
文摘For the aqueous Zn-ion battery,dendrite formation,corrosion,and interfacial parasitic reactions are major issues,which greatly inhibits their practical application.How to develop a method of Zn construction or treatment to solve these issues for Zn anodes are still great challenges.Herein,a simple and cheap metal passivation technique is proposed for Zn anodes from a corrosion science perspective.Similar to the metal anticorrosion engineering,the formed interfacial protective layer in a chemical way can sufficiently solve the corrosion issues.Furthermore,the proposed passivity approach can reconstruct Zn surface-preferred crystal planes,exposing more(002)planes and improving surface hydrophilicity,which inhibits the formation of Zn dendrites and hydrogen evolution effectively.As expected,the passivated Zn achieves outstanding cycling life(1914 h)with low voltage polarization(<40 mV).Even at 6 mA cm^(−2) and 3 mA h cm^(−2),it can achieve stable Zn deposition over 460 h.The treated Zn anode coupled with MnO_(2) cathode shows prominently reinforced full batteries service life,making it a potential Zn anode candidate for excellent performance aqueous Zn-ion batteries.The proposed passivation approach provides a guideline for other metal electrodes preparation in various batteries and establishes the connections between corrosion science and batteries.
基金supported by the National Natural Science Foundation of China (Grant No.40275004)the State Key Laboratory of Atmosphere Physics and Chemistry,and the City University of Hong Kong(Grant No.8780046)the City University of Hong Kong Strategic Research(Grant No.7001038)
文摘This paper uses a Modified Soil-Plant-Atmosphere Scheme (MSPAS) to study the interaction between land surface and atmospheric boundary layer processes. The scheme is composed of two main parts: atmospheric boundary layer processes and land surface processes. Compared with SiB and BATS, which are famous for their detailed parameterizations of physical variables, this simplified model is more convenient and saves much more computation time. Though simple, the feasibility of the model is well proved in this paper. The numerical simulation results from MSPAS show good agreement with reality. The scheme is used to obtain reasonable simulations for diurnal variations of heat balance, potential temperature of boundary layer, and wind field, and spatial distributions of temperature, specific humidity, vertical velocity, turbulence kinetic energy, and turbulence exchange coefficient over desert and oasis. In addition, MSPAS is used to simulate the interaction between desert and oasis at night, and again it obtains reasonable results. This indicates that MSPAS can be used to study the interaction between land surface processes and the atmospheric boundary layer over various underlying surfaces and can be extended for regional climate and numerical weather prediction study.
基金This study was supported by the National Natural Science Foundation of China (Grant Nos. 40233030, 40405004, 40405014).
文摘The Regional Atmospheric Modeling System (RAMS) and the computational fluid dynamics (CFD) codes known as FLUENT are combinatorially applied in a multi-scale numerical simulation of the urban surface layer (USL). RAMS and FLUENT are combined as a multi-scale numerical modeling system, in which the RAMS simulated data are delivered to the computational model for FLUENT simulation in an offline way. Numerical simulations are performed to present and preliminarily validate the capability of the multi-scale modeling system, and the results show that the modeling system can reasonably provide information on the meteorological elements in an urban area from the urban scale to the city-block scale, especially the details of the turbulent flows within the USL.
基金Project(2007BAK28B03)supported by the National Eleventh-Five Year Research Program of ChinaProject(2010YD05)supported by the Fundamental Research Funds for the Central UniversitiesProject(200911036)supported by the Ministry of Land and Resources Research Special
文摘Based on specific geology and mining conditions of certain coal working face in China, a series of numerical models under different unconsolidated layers thickness were respectively established by employing FLAC3D. The relationship between the unconsolidated layers thickness and surface movement laws was studied. Maximum surface subsidence, Maximum horizontal displacement and surface subsidence degree were obtained. Contours of surface subsidence/horizontal displacement and curves were drawn. Some laws of surface subsidence/horizontal displacement were analyzed. The role of the unconsolidated layers in surface subsidence was revealed. It is significant to predict surface subsidence of thick unconsolidated layers for coal mine and take effective measures to control surface subsidence.
基金Project supported by the National Natural Science Foundation of China(Nos.10132010 and 10072033)
文摘The propagation of surface acoustic waves in layered piezoelectric structureswith initial stresses is investigated. The phase velocity equations are obtained for electricallyfree and shorted cases, respectively. Effects of the initial stresses on the phase velocity and theelectromechanical coupling coefficient for the fundamental mode of the layered piezoelectricstructures are discussed. Numerical results for the c-axis oriented film of LiNbO_3 on a sapphiresubstrate are given. It is found that the fractional change in phase velocity is a linear functionwith the initial stresses, and the electromechanical coupling factor increases with an increase ofthe absolute values of the compressive initial stresses. The results are useful for the design ofsurface acoustic wave devices.
文摘In this paper,we proposal stream surface and stream layer.By using classical tensor calculus,we derive 3-D Navier-Stokes Equations(NSE)in the stream layer under semigeodesic coordinate system,Navier-Stokes equation on the stream surface and 2-D Navier-Stokes equations on a two dimensional manifold. After introducing stream function on the stream surface,a nonlinear initial-boundary value problem satisfies by stream function is obtained,existence and uniqueness of its solution are proven.Based this theory we proposal a new method called"dimension split method"to solve 3D NSE.
基金supported by the National Natural Science Foundation of China(Grant Nos.41376039,41376019 and 41421005)the NSFC-Shandong Joint Fund for Marine Science Research Centers(Grant No.U1406401)+1 种基金the IOCAS through the CAS Strategic Priority Project[the Western Pacific Ocean System(WPOS)]the WPOS in the "Strategic Priority Research Program" of the Chinese Academy of Sciences(Grant No.XDA11010304)
文摘As salinity stratification is necessary to form the barrier layer (BL), the quantification of its role in BL interannual variability is crucial. This study assessed salinity variability and its effect on the BL in the equatorial Pacific using outputs from Beijing Normal University Earth System Model (BNU-ESM) simulations. A comparison between observations and the BNU-ESM simulations demonstrated that BNU-ESM has good capability in reproducing most of the interannual features observed in nature. Despite some discrepancies in both magnitude and location of the interannual variability centers, the displacements of sea surface salinity (SSS), barrier layer thickness (BLT), and SST simulated by BNU-ESM in the equatorial Pacific are realistic. During E1 Nifio, for example, the modeled interannual anomalies of BLT, mixed layer depth, and isothermal layer depth, exhibit good correspondence with observations, including the development and decay of E1 Nifio in the central Pacific, whereas the intensity of the interannual variabilities is weaker relative to observations. Due to the bias in salinity simulations, the SSS front extends farther west along the equator, whereas BLT variability is weaker in the central Pacific than in observations. Further, the BNU-ESM simulations were examined to assess the relative effects of salinity and temperature variability on BLT. Consistent with previous observation-based analyses, the interannual salinity variability can make a significant contribution to BLT relative to temperature in the western-central equatorial Pacific.
基金Partial work of this project funded by National Elite Foundation of Iran and Iranian Nanotechnology Initiative is appreciated.
文摘Size distribution of nano-carbides produced by duplex treatments of surface nanocrystallization(by surface severe plastic deformation) and plasma electrolytic carburizing on CP-Ti was investigated.Skewness and kurtosis of Gussian shape distribution curves were studied and the effect of time was determined.The usage of longer time is more suitable for achieving less size of complex nano-carbides.Surface roughness of treated samples was measured.It is observed that there is an optimum level for time on surface roughness increasing(difference between two measured data).