A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the...A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.展开更多
The influence of initial strain state on the dynamic response of an end bearing pile embedded in isotropic saturated soil is investigated through the linearized theory of small elastic perturbation superposed on large...The influence of initial strain state on the dynamic response of an end bearing pile embedded in isotropic saturated soil is investigated through the linearized theory of small elastic perturbation superposed on largely stressed bodies. The governing equations for soil, based on Blot's poroelasticity theory, are derived in the cylindrical coordinates, and the pile is modeled by using the one-dimensional elastic theory. The analytical solutions of pile impedance, frequency response of both twist angle and time history of velocity response are obtained by using of separation of variables technique. Finally, a parametric study of the influence of initial strains on the torsional impedance, twist angle, and velocity response at the top of the pile is carried out.展开更多
During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteris...During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteristics of soil with different tension and compression moduli and dilation are involved by applying the elastic theory with different moduli and logarithmic strain. The closed-form solutions of the radius of the plastic region,the displacement of the boundary between the plastic region and the elastic region and the expansion pressure on the external surface of the pipe piles are obtained. When obtaining these solutions,the soil plug in the open-ended pipe pile is considered by employing an incremental filling ratio to quantify the degree of soil plugging. Moreover,the effects of the ratio of tension and compression moduli,angle of dilation and incremental filling ratio on the radius of the plastic region and the expansion pressure on the external surface of the pipe pile are investigated. The parametric analyses show that it is necessary and important to consider the difference between the tension modulus and compression modulus,dilation angle and incremental filling ratio for studying the squeezing effect of open-ended pipe pile installation. It is concluded that the analytical solutions presented in this paper are suitable for studying the squeezing effect of open-ended pipe piles.展开更多
Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well ceme...Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well cement can be considered special variable cross-section piles.Replacing or partially replacing the steel pipe pile foundation with a variable cross-section pile to provide the required bearing capacity for an offshore oil platform can reduce the cost of foundation construction and improve the economic efficiency of production.In this paper,the finite element analysis method is used to investigate the variable cross-section bearing mode of composite piles composed of a riser and a surface casing in saturated clay under a vertical load.The calculation formula of the bearing capacity at the variable section is derived based on the theory of spherical cavity expansion,the influencing factors of the bearing capacity coefficient N_(c) are revealed,and the calculation method of N_(c) is proposed.By comparing the calculation results with the results of the centrifuge test,the accuracy and applicability of the calculation method are verified.The results show that the riser composite pile has a rigid core in the soil under the variable cross-section,which increases the bearing capacity at the variable cross-section.展开更多
A study of piles is quit complex and the estimation of carrying capacity is calculated from theoretical formula and load test results. The design resistance may be calculated using conventional static pile design theo...A study of piles is quit complex and the estimation of carrying capacity is calculated from theoretical formula and load test results. The design resistance may be calculated using conventional static pile design theory. The pile founding depths should be predetermined before installation from a site geotechnical investigation. To ascertain the field performance and estimate load carrying capacities of piles, in-situ pile load tests should be conducted. In this study, field pile load test data is analyzed to estimate the ultimate load for end bearing piles. The investigated site is about 100 × 110 m located in Alexandria, Egypt. Geotechnical investigations at the site are carried out to a maximum depth of 45 m. Four borings have been done in field. The tests are conducted at the site for two skelton structure buildings to be constructed on raft foundation rested on piles executed by continuous flight auger. Four pile load tests are performed on 600 mmdiameters and 27 mlengths. Ultimate capacities of piles are determined according to different methods. It is concluded that the percentage of friction load carried by the shaft along the pile length is about 46% of total load while the percentage of load carried by the end bearing is 54% of total load. A new proposed method by the author is presented to calculate the ultimate capacity of pile from pile load test. The proposed method depends on the settlement of pile without taken into consideration the elastic deformation. An empirical formula is presented from the relationship between stress and settlement of pile due to friction and end bearing only after deducting the elastic deformation. However, the obtained results for the ultimate capacity of end bearing piles are considered to be more accurate than other methods. The proposed method appears to give bitter results that agrees well with the theoretical predictions. The proposed method is easier, quicker and more reliable.展开更多
基金Project(51078330) supported by the National Natural Science Foundation of ChinaProject(2012MS21339) supported by China Postdoctoral Science FoundationProject(2012GN012) supported by the Independent Innovation Foundation of Shandong University, China
文摘A series of well-designed full-scale destructive load tests were conducted on six bored piles to investigate the influence of loose debris at the pile tip on end resistance. The results show that soft debris below the pile tip will weaken the mobilization of end resistance. The ultimate tip resistance of post-grouted pile is 2.05 times that of the pile without post-grouting and the ultimate tip resistance in the second load cycle is 2.31 times that of pile in the first load cycle. The relationship between unit end resistance and displacement follows a linear model and a bilinear mode in the first load cycle and the second load cycle, respectively, whereas the unit end resistance-displacement response of post-grouted bored pile can be simulated using a bilinear mode. The critical end resistance ranges between 2 000 kN and 3 000 kN and the critical displacement ranges between 2.5 mm and 4.5 mm in the bilinear mode. As for piles rested on moderately-weathered peliticsiltstone, the socketed length has no effect on the end resistance because of the existence of loose debris.
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘The influence of initial strain state on the dynamic response of an end bearing pile embedded in isotropic saturated soil is investigated through the linearized theory of small elastic perturbation superposed on largely stressed bodies. The governing equations for soil, based on Blot's poroelasticity theory, are derived in the cylindrical coordinates, and the pile is modeled by using the one-dimensional elastic theory. The analytical solutions of pile impedance, frequency response of both twist angle and time history of velocity response are obtained by using of separation of variables technique. Finally, a parametric study of the influence of initial strains on the torsional impedance, twist angle, and velocity response at the top of the pile is carried out.
文摘During the installation of a pipe pile,the soil around the pile will be squeezed out. This paper deals with this squeezing effect of open-ended pipe piles using the cylindrical cavity expansion theory. The characteristics of soil with different tension and compression moduli and dilation are involved by applying the elastic theory with different moduli and logarithmic strain. The closed-form solutions of the radius of the plastic region,the displacement of the boundary between the plastic region and the elastic region and the expansion pressure on the external surface of the pipe piles are obtained. When obtaining these solutions,the soil plug in the open-ended pipe pile is considered by employing an incremental filling ratio to quantify the degree of soil plugging. Moreover,the effects of the ratio of tension and compression moduli,angle of dilation and incremental filling ratio on the radius of the plastic region and the expansion pressure on the external surface of the pipe pile are investigated. The parametric analyses show that it is necessary and important to consider the difference between the tension modulus and compression modulus,dilation angle and incremental filling ratio for studying the squeezing effect of open-ended pipe pile installation. It is concluded that the analytical solutions presented in this paper are suitable for studying the squeezing effect of open-ended pipe piles.
基金This research was financially supported by the National Science Fund for Distinguished Young Scholars(Grant No.51825904)the National Science and Technology Major Project from the Ministry of Science and Technology(MOST)of China(Grant No.2016ZX05058004-005).
文摘Reducing the cost of offshore platform construction is an urgent issue for marginal oilfield development.The offshore oil well structure includes a riser and a surface casing.The riser,surface casing and oil well cement can be considered special variable cross-section piles.Replacing or partially replacing the steel pipe pile foundation with a variable cross-section pile to provide the required bearing capacity for an offshore oil platform can reduce the cost of foundation construction and improve the economic efficiency of production.In this paper,the finite element analysis method is used to investigate the variable cross-section bearing mode of composite piles composed of a riser and a surface casing in saturated clay under a vertical load.The calculation formula of the bearing capacity at the variable section is derived based on the theory of spherical cavity expansion,the influencing factors of the bearing capacity coefficient N_(c) are revealed,and the calculation method of N_(c) is proposed.By comparing the calculation results with the results of the centrifuge test,the accuracy and applicability of the calculation method are verified.The results show that the riser composite pile has a rigid core in the soil under the variable cross-section,which increases the bearing capacity at the variable cross-section.
文摘A study of piles is quit complex and the estimation of carrying capacity is calculated from theoretical formula and load test results. The design resistance may be calculated using conventional static pile design theory. The pile founding depths should be predetermined before installation from a site geotechnical investigation. To ascertain the field performance and estimate load carrying capacities of piles, in-situ pile load tests should be conducted. In this study, field pile load test data is analyzed to estimate the ultimate load for end bearing piles. The investigated site is about 100 × 110 m located in Alexandria, Egypt. Geotechnical investigations at the site are carried out to a maximum depth of 45 m. Four borings have been done in field. The tests are conducted at the site for two skelton structure buildings to be constructed on raft foundation rested on piles executed by continuous flight auger. Four pile load tests are performed on 600 mmdiameters and 27 mlengths. Ultimate capacities of piles are determined according to different methods. It is concluded that the percentage of friction load carried by the shaft along the pile length is about 46% of total load while the percentage of load carried by the end bearing is 54% of total load. A new proposed method by the author is presented to calculate the ultimate capacity of pile from pile load test. The proposed method depends on the settlement of pile without taken into consideration the elastic deformation. An empirical formula is presented from the relationship between stress and settlement of pile due to friction and end bearing only after deducting the elastic deformation. However, the obtained results for the ultimate capacity of end bearing piles are considered to be more accurate than other methods. The proposed method appears to give bitter results that agrees well with the theoretical predictions. The proposed method is easier, quicker and more reliable.