BACKGROUND Metadherin(MTDH)is a key oncogene in most cancer types,including hepato-cellular carcinoma(HCC).Notably,MTDH does not affect the stemness pheno-type or immune infiltration of HCC.AIM To explore the role of ...BACKGROUND Metadherin(MTDH)is a key oncogene in most cancer types,including hepato-cellular carcinoma(HCC).Notably,MTDH does not affect the stemness pheno-type or immune infiltration of HCC.AIM To explore the role of MTDH on stemness and immune infiltration in HCC.METHODS MTDH expression in HCC tissues was detected using TCGA and GEO databases.Immunohistochemistry was used to analyze the tissue samples.MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines.The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays.Next,we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium.Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR.Flow cytometry,immunofluorescence,and tumor sphere formation assays were used to characterize stem-like cells.The effects of MTDH inhibition on tumor growth were evaluated in vivo.The correlation of MTDH with immune cells,immunomodulators,and chemokines was analyzed using ssGSEA and TISIDB databases.RESULTS HCC tissues expressed higher levels of MTDH than normal liver tissues.High MTDH expression was associated with a poor prognosis.HCC cells overex-pressing MTDH exhibited stronger invasion and migration abilities,exhibited a stem cell-like phenotype,and formed spheres;however,MTDH inhibition attenuated these effects.MTDH inhibition suppressed HCC progression and CD133 expression in vivo.MTDH was positively correlated with immature dendritic,T helper 2 cells,central memory CD8^(+)T,memory B,activated dendritic,natural killer(NK)T,NK,activated CD4^(+)T,and central memory CD4^(+)T cells.MTDH was negatively correlated with activated CD8^(+)T cells,eosinophils,activated B cells,monocytes,macrophages,and mast cells.A positive correlation was observed between the MTDH level and CXCL2 expression,whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression.CONCLUSION High levels of MTDH expression in patients with HCC are associated with poor prognosis,promoting tumor stemness,immune infiltration,and HCC progression.展开更多
Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but t...Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration.展开更多
Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research w...Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.展开更多
Objective:SOX11 is expressed in numerous malignancies,including hepatocellular carcinomas(HCC),but its oncogenic function has not been elucidated.Here,we performed a comprehensive bioinformatics analysis of the Liver ...Objective:SOX11 is expressed in numerous malignancies,including hepatocellular carcinomas(HCC),but its oncogenic function has not been elucidated.Here,we performed a comprehensive bioinformatics analysis of the Liver Hepatocellular Carcinoma(LIHC)dataset to investigate the function of SOX11 in tumorgenesis.Methods:SOX11 expression data from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)were validated by immunohistochemistry(IHC).Co-expression,differential expression,and functional analyses utilized TCGA-LIHC,Timer 2.0,Metascape,GTEx,and LinkedOmics databases.Associations with immune infiltration,ferroptosis,and immune checkpoint genes were assessed.Genetic changes were explored via CBioPortal.Logistic regression,receiver operating characteristic curve(ROC),Kaplan-Meier analysis,and nomogram modeling evaluated associations with HCC clinicopathological features.SOX11’s impact on proliferation and migration was studied in HepG2 and HuH7 cell lines.Results:SOX11 was significantly elevated in HCC tumors compared to controls.SOX11-associated genes exhibited differential expression in pathways involving extracellular membrane ion channels.Significant associations were found between SOX11 levels,immune infiltration,ferroptosis,and immune checkpoint genes in HCC tissue.SOX11 levels correlated with HCC stage,histologic grade,and tumor status,and independently predicted overall and disease-specific survival.SOX11 expression effectively distinguished between tumor and normal liver tissue.Spearman correlations highlighted a significant relationship between SOX11 and ferroptosis-associated genes.Decreased SOX11 levels in HepG2 and HuH7 cells resulted in reduced proliferation and migration.Conclusions:SOX11 was found to represent a promising biomarker within HCC diagnosis and prognosis together with being a possible drug-target.展开更多
Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is ...Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is limited research on the relationship between CRABP2 and immunotherapy response.This study found that negative correlations of CRABP2 and immune checkpoint markers(PD-1,PD-L1,and CTLA-4)were observed in breast invasive carcinoma(BRCA),skin cutaneous melanoma(SKCM),stomach adenocarcinoma(STAD)and testicular germ cell tumors(TGCT).In particular,in SKCM patients who were treated with PD-1 inhibitors,high levels of CRABP2 predicted poor prognosis.Additionally,CRABP2 expression was elevated in cancer-associated fibroblasts(CAFs)at the single-cell level.The expression of CRABP2 was positively correlated with markers of CAFs,such as MFAP5,PDPN,ITGA11,PDGFRα/βand THY1 in SKCM.To validate the tumor-promoting effect of CRABP2 in vivo,SKCM xenograft mice models with CRABP2 overexpression have been constructed.These models showed an increase in tumor weight and volume.Enrichment analysis indicated that CRABP2 may be involved in immunerelated pathways of SKCM,such as extracellular matrix(ECM)receptor interaction and epithelial-mesenchymal transition(EMT).The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs.In conclusion,this study provides new insights into the role of CRABP2 in immunotherapy response.The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients.Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.展开更多
Background: A major cause of cancer death worldwide is bladder cancer, which is the most common malignant tumor of the urinary tract. PAEP is a member of the kernel lipocalin superfamily whose members share relatively...Background: A major cause of cancer death worldwide is bladder cancer, which is the most common malignant tumor of the urinary tract. PAEP is a member of the kernel lipocalin superfamily whose members share relatively low sequence similarity but have highly conserved exon/intron structure and three-dimensional protein folding. Most lipocalins are clustered on the long arm of chromosome 9. The purpose of this study was to clarify the correlation between PAEP expression level and bladder cancer. Methods: In the TCGA database, we obtained clinical and RNA sequencing data of 431 BLCA patients, including 412 BLCA tissues and 19 normal bladder tissues in the study. Analyses of bioinformatics were conducted in this study to determine the role of PAEP in bladder cancer. A quantitative real-time PCR method was used to quantitate the gene expression profile. Additionally, the effect of PAEP on tumor immune infiltration and prognosis was analyzed. Results: PAEP was a poor prognostic biomarker of bladder cancer because it was significantly upregulated. bladder cancer patients with higher PAEP expression had poor outcomes. An AUC of 0.780 was calculated from the area under the ROC curve. PAEP was associated with T stage, pathologic stage, Histologic grade and Subtype of bladder cancer patients, and served as an independent predictor of overall survival in bladder cancer patients. Functional enrichment analysis revealed PAEP was obviously enriched in pathways connected with carcinogenesis and immunosuppression. The expression of PAEP was significantly associated with tumor immune cells and immune checkpoints according to ssGSEA and Spearman correlation analysis. Conclusions: In this study, we screened and detected a mRNA, PAEP is a prognostic and immune-related biomarker in BLCA, which may contribute to the early diagnosis and treatment of BLCA.展开更多
Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a...Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size.展开更多
ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to...ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.展开更多
Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e...Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h.展开更多
BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing t...BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.展开更多
The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditiona...The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.展开更多
Background:Owing to the occurrence of primary or secondary tolerance,the efficacy of immunotherapy for hepatocellular carcinoma(HCC)patients is limited.Therefore,the mechanism underlying this tolerance needs to be fur...Background:Owing to the occurrence of primary or secondary tolerance,the efficacy of immunotherapy for hepatocellular carcinoma(HCC)patients is limited.Therefore,the mechanism underlying this tolerance needs to be further investigated.B cell–specific Moloney murine leukemia virus integration site 1(BMI1)is associated with cancer stem cell tumorigenesis,progression,and the maintenance of the self-renewal.However,the effect of BMI1 expression on immune infiltration and prognosis in HCC is still unclear.Methods:To assess the relationship between BMI1 expression and HCC prognosis and immune infiltration,the GEPIA database,TIMER database,and K-M plotter were used.TIMER database was used to determine the levels ofBMI1 in various tumor tissues and corresponding normal tissues,and examine the association between BMI1 expression and tumor-infiltrating immune cells.GEPIA database was applied to determine BMI1 expression in various tumor tissues and corresponding normal tissues.K-M Plotter was used to study the relationships among BMI1 expression,clinicopathological features,and survival rates.Results:BMI1 expression was markedly higher in various solid tumors compared with that in the respective normal tissues,including HCC,and high expression led to poor relapse-free survival and overall survival in HCC patients.BMI1 overexpression was also correlated with the infiltration of immune cells(eg,B cells,CD8+T cells,CD4+T cells,dendritic cells,neutrophils,and macrophages)and positively associated with different subsets of T cells,monocytes,and M1 macrophages,among others.Conclusions:This study demonstrates that high BMI1 expression is strongly correlated with immune infiltration and poor prognosis in HCC.Increased expression of BMI1 might thus be a potential mechanism of immune tolerance in this disease.展开更多
This editorial will focus on tumor immunity and the factors that alter the tumor immune micro-environment.The role of tumor infiltrating lymphocytes(TILs)will also be discussed in detail,including the types,mechanism ...This editorial will focus on tumor immunity and the factors that alter the tumor immune micro-environment.The role of tumor infiltrating lymphocytes(TILs)will also be discussed in detail,including the types,mechanism of action,and role.Gastric cancer(GC)often presents in the advanced stage and has various factors predicting the outcomes.The interplay of these factors and their correlation with the TILs is discussed.A literature review revealed high intratumoral TILs associated with higher grade,HER2-,and Helicobacter pylori negativity.Moreover,stromal(ST)TILs correlated with lower grade and lesser recurrence risk in GC.High TILs in ST and invasive border also correlated with mismatch repair deficiency status.Further characterization of the CD3+,CD8+,and other cells is also warranted.In the future,this complex correlation of cancer cells with the immune system can be explored for therapeutic avenues.展开更多
Colorectal cancer(CRC)is a prevalent malignant tumor,with the global new cases reaching 1.9316 million and deaths reaching 935,200 in 2022.In China,therewere 555,500 new cases of CRC,with an age-standardized incidence...Colorectal cancer(CRC)is a prevalent malignant tumor,with the global new cases reaching 1.9316 million and deaths reaching 935,200 in 2022.In China,therewere 555,500 new cases of CRC,with an age-standardized incidence rate of 24.07 per 10million,and 286,200 deaths.China accounts for approximately 30%of new cases and deaths from CRC worldwide,with East Asia accounting for over 75%.Initially,CRC presents as local tumor growth,but it has the potential to spread to other body parts over time.Perineural infiltration(PNI)is a relatively less discussed route of diffusion,yet it plays a crucial role in the progression and prognosis of CRC.PNI often occurs alongside local lymph nodes and distant metastases,posing challenges for treatment and management.Clinical symptoms,radiographic findings,and histopathological examination can be used to diagnose PNI with skipmetastasis.Symptoms commonly include local pain,paresthesia,andmotor impairment.Imaging helps identify the mass’s location and relationship to nerves,whereas histopathological examination confirms the diagnosis.Treatment of PNI skipmetastases is similar to other CRC metastases,including surgical resection,chemotherapy,radiotherapy,and targeted therapy.Surgical resection is the primary therapeutic approach,but the wider range of metastasis in PNI skip transfer may limit its feasibility.In cases where surgical resection is not possible,chemotherapy,radiotherapy,and targeted therapy are used to control tumor metastasis.In conclusion,PNI skip metastases increase the risk of poor prognosis for CRC,requiring a comprehensive approach with multiple treatments to prevent disease progression.Early detection and treatment are vital to improving prognosis.展开更多
BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the crit...BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the critical regulators and underlying molecular mechanisms remain largely unknown.AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention.METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide(4NQO)to C57BL/6 mice.Moreover,we established a control group without 4NQO treatment of mice.Then,transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses,including low-grade IN(LGIN),high-grade IN(HGIN),and CA,and controlled normal tissue(NOR)samples.Differentially expressed genes(DEGs)were identified in the LGIN,HGIN,and CA groups,and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.The CIBERSORT algorithm was used to detect the pattern of immune cell infilt-ration.Immunohistochemistry(IHC)was also conducted to validate our results.Finally,the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice.RESULTS Compared with those in the NOR group,a total of 681541,and 840 DEGs were obtained in the LGIN,HGIN,and CA groups,respectively.Using the intersection of the three sets of DEGs,we identified 86 genes as key genes involved in the development of ESCC.Enrichment analysis revealed that these genes were enriched mainly in the keratinization,epidermal cell differentiation,and interleukin(IL)-17 signaling pathways.CIBERSORT analysis revealed that,compared with those in the NOR group,M0 and M1 macrophages in the 4NQO group showed stronger infiltration,which was validated by IHC.Serum cytokine analysis revealed that,compared with those in the NOR group,IL-1βand IL-6 were upregulated,while IL-10 was downregulated in the LGIN,HGIN,and CA groups.Moreover,the expression of the representative key genes,such as S100a8 and Krt6b,was verified in external human samples,and the results of immunohistochemical staining were consistent with the findings in mice.CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions.In addition,we found that macrophage infiltration and abnormal alterations in the levels of inflam-mation-associated cytokines,such as IL-1β,IL-6,and IL-10,in the peripheral blood may be closely associated with the development of ESCC.展开更多
Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:...Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:We utilized gene expression datasets,ferroptosis upregulated genes and applied machine learning algorithms,including LASSO and SVM-RFE,to identify key ferroptosis-related genes in pancreatic cancer.Perform Gene Ontology,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology enrichment analysis,immune infiltration analysis and correlation analysis between immune infiltrating cells and characteristic genes on differentially expressed genes using the R software package.Retrieve potential traditional Chinese medicine for targeted ferroptosis gene therapy for pancreatic cancer through Coremine and Herb databases.Results:Seventeen feature genes were identified,with significant implications for immune cell infiltration in pancreatic cancer.The results of immune cell infiltration analysis showed that B cells naive,B cells memory,T cells regulatory,and M0 macrophages were significantly upregulated in pancreatic cancer patients;Mast cells resting were significantly downregulated.Chinese herbal medicines such as ginkgo,turmeric,ginseng,Codonopsis pilosula,Zedoary turmeric,deer tendons,senna leaves,Guanmu Tong,Huangqi,and Banzhilian are potential drugs for targeted ferroptosis gene therapy for pancreatic cancer.Conclusion:TIMP1 emerged as a key gene,with several TCM herbs predicted to modulate its expression,offering new avenues for treatment.展开更多
In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltrati...In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltration simulation tests were conducted on homogeneous soil and layered soil(layer thickness 5,10,and 20 cm),respectively.The results show that during the whole experiment,there was a small difference between S5A95(aeolian sandy soil 95 cm thick was covered with sierozem 5 cm thick)and S10A90(aeolian sandy soil 90 cm thick was covered with sierozem 10 cm thick)in the wetting front process,infiltration rate and cumulative infiltration,but there was a significant difference between S5A95 and S20A80(aeolian sandy soil 80 cm thick was covered with sierozem 20 cm thick).In the initial infiltration stage,there was no significant difference between A5S95(sierozem 95 cm thick was covered with aeolian sandy soil 5 cm thick)and A10S90(sierozem 90 cm thick was covered with aeolian sandy soil 10 cm thick).However,with the increase of infiltration time,the wetting front process,A5S95,A10S90 and A20S80 had significant differences in terms of wetting front process,infiltration rate and cumulative infiltration.The infiltration capacity of A was significantly higher than that of S.Combined with linear R 2 value and model parameters,the three infiltration models were comprehensively compared,and the fitting process and results of the general empirical model for the infiltration process of homogeneous soil and layered soil showed good results.Three models were used to simulate the water infiltration process of layered soil with different textures,and the order of the effect is as follows:general empirical model>Kostiakov model>Philip model.Soil type and layer thickness had a great influence on water infiltration process.When sierozem was covered with aeolian sandy soil 20 cm thick,the infiltration capacity was the best.As aeolian sandy soil was covered with sierozem 10 cm thick,the infiltration effect was the worst.Therefore,once coarse graying occurs on the surface of sierozem(the thickness of sand is more than 20 cm)or when the content of fine particles overlying aeolian sandy soil(the thickness of silt and clay soil is more than 10 cm)during ecological restoration is high,the soil hydrological characteristics will change significantly,which may lead to changes in vegetation types and even ecosystem structure.展开更多
Background:The molecular mechanism underlying the involvement of the Transferrin receptor(TFRC)in cervical cancer remains poorly understood.This study aims to elucidate the role of TFRC in cervical cancer by analyzing...Background:The molecular mechanism underlying the involvement of the Transferrin receptor(TFRC)in cervical cancer remains poorly understood.This study aims to elucidate the role of TFRC in cervical cancer by analyzing data from The Cancer Genome Atlas(TCGA)and Genotype-Tissue Expression(GTEx)databases.Methods:TFRC protein expression was obtained from Human Protein Altas(HPA).All datas were collected from TCGA and GTEx.In this study,we analyzed the expression of TFRC in cervical cancer and its clinical significance.Through Kyoto Encyclopedia of Genes and Genomes(KEGG)and Gene set enrichment analyses(GSEA),investigated the related molecular pathways of TFRC.The relationship between TFRC and immune infiltration was then examined.The prognosis of different immune cell subsets was then analyzed after dividing cervical cancer patients into high and low expression of TFRC groups.Results:TFRC is highly expressed in various tumor tissues compared to control normal tissues,including cervical cancer.An increased expression of TFRC was associated with higher Tumor(T)and Node(N)stage,as well as a higher clinical stage.Kaplan–Meier(KM)survival analysis investigated that higher TFRC expression patients have a poor overall survival(OS),disease specific survival(DSS)and progress free interval(PFI).Both KEGG and GSEA enriched signaling pathway by high TFRC and low TFRC groups.There was a significant negative linear correlation between TFRC expression and immune infiltration.TFRC affects the prognosis of cervical cancer patients through immune pathway.Conclusions:Cervical cancer patients with TFRC expression may have a worse prognosis.展开更多
Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological funct...Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological functions.As a potential therapeutic target and a promising prognostic indicator,the potential effects and processes of SFPQ in HCC require further investigation.Methods:The RNA sequencing data were obtained from the Gene Expression Omnibus,International Cancer Genome Consortium,and The Cancer Genome Atlas databases to analyze SFPQ expression and differentially expressed genes(DEGs).We utilized the LinkedOmics database to identify co-expressed genes.A Venn diagram was constructed to determine the overlapping genes between the DEGs and the co-expressed genes.Functional enrichment analysis was performed on the overlapping genes and DEGs.Furthermore,our study involved functional enrichment analysis,a protein-protein interaction network analysis,and an analysis of immune cell infiltration.The cBioPortal and Tumor Immune Single-cell Hub were utilized to investigate the genetic alterations of SFPQ and the single-cell transcriptome visualization of the tumor microenvironment.A ceRNA network was established with the assistance of the ENCORI website.Finally,we elucidated the clinical significance of SFPQ in HCC by employing Kaplan-Meier survival analysis,univariate and multivariate Cox regression,and prognostic nomogram models.Results:The expression of SFPQ in HCC tissues was significantly elevated compared to normal tissues.GSEA results indicated that increased expression of SFPQ was associated with pathways related to HCC.The ceRNA network,including SFPQ,hsa-miR-101-3p,AC023043.4,AC124798.1,AC145207.5,and GSEC,was constructed with the assistance of ENCORI.High SFPQ expression was related to a poor prognosis in HCC and its subtypes.Univariate and multivariate Cox regression analysis showed that elevated SFPQ expression is an independent predictive factor.Conclusions:The overexpression of SFPQ may serve as a potential prognostic biomarker,indicating a poor prognosis in HCC.展开更多
Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve...Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.展开更多
基金National Natural Science Foundation of China,No.82173359Basic Research and Frontier Exploration Project of Chongqing and Technology Commission,No.cstc2018jcyjAX0181Kuanren Talents Program of The Second Affiliated Hospital of Chongqing Medical University.
文摘BACKGROUND Metadherin(MTDH)is a key oncogene in most cancer types,including hepato-cellular carcinoma(HCC).Notably,MTDH does not affect the stemness pheno-type or immune infiltration of HCC.AIM To explore the role of MTDH on stemness and immune infiltration in HCC.METHODS MTDH expression in HCC tissues was detected using TCGA and GEO databases.Immunohistochemistry was used to analyze the tissue samples.MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines.The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays.Next,we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium.Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR.Flow cytometry,immunofluorescence,and tumor sphere formation assays were used to characterize stem-like cells.The effects of MTDH inhibition on tumor growth were evaluated in vivo.The correlation of MTDH with immune cells,immunomodulators,and chemokines was analyzed using ssGSEA and TISIDB databases.RESULTS HCC tissues expressed higher levels of MTDH than normal liver tissues.High MTDH expression was associated with a poor prognosis.HCC cells overex-pressing MTDH exhibited stronger invasion and migration abilities,exhibited a stem cell-like phenotype,and formed spheres;however,MTDH inhibition attenuated these effects.MTDH inhibition suppressed HCC progression and CD133 expression in vivo.MTDH was positively correlated with immature dendritic,T helper 2 cells,central memory CD8^(+)T,memory B,activated dendritic,natural killer(NK)T,NK,activated CD4^(+)T,and central memory CD4^(+)T cells.MTDH was negatively correlated with activated CD8^(+)T cells,eosinophils,activated B cells,monocytes,macrophages,and mast cells.A positive correlation was observed between the MTDH level and CXCL2 expression,whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression.CONCLUSION High levels of MTDH expression in patients with HCC are associated with poor prognosis,promoting tumor stemness,immune infiltration,and HCC progression.
基金funding support from the science and technology innovation Program of Hunan Province(Grant No.2023RC1017)Hunan Provincial Postgraduate Research and Innovation Project(Grant No.CX20220109)National Natural Science Foundation of China Youth Fund(Grant No.52208378).
文摘Machine learning(ML)provides a new surrogate method for investigating groundwater flow dynamics in unsaturated soils.Traditional pure data-driven methods(e.g.deep neural network,DNN)can provide rapid predictions,but they do require sufficient on-site data for accurate training,and lack interpretability to the physical processes within the data.In this paper,we provide a physics and equalityconstrained artificial neural network(PECANN),to derive unsaturated infiltration solutions with a small amount of initial and boundary data.PECANN takes the physics-informed neural network(PINN)as a foundation,encodes the unsaturated infiltration physical laws(i.e.Richards equation,RE)into the loss function,and uses the augmented Lagrangian method to constrain the learning process of the solutions of RE by adding stronger penalty for the initial and boundary conditions.Four unsaturated infiltration cases are designed to test the training performance of PECANN,i.e.one-dimensional(1D)steady-state unsaturated infiltration,1D transient-state infiltration,two-dimensional(2D)transient-state infiltration,and 1D coupled unsaturated infiltration and deformation.The predicted results of PECANN are compared with the finite difference solutions or analytical solutions.The results indicate that PECANN can accurately capture the variations of pressure head during the unsaturated infiltration,and present higher precision and robustness than DNN and PINN.It is also revealed that PECANN can achieve the same accuracy as the finite difference method with fewer initial and boundary training data.Additionally,we investigate the effect of the hyperparameters of PECANN on solving RE problem.PECANN provides an effective tool for simulating unsaturated infiltration.
基金the Research Fund of National Natural Science Foundation of China(NSFC)(Grant Nos.42477142 and 42277154)the Project of Slope Safety Control and Disaster Prevention Technology Innovation team of“Youth Innovation Talent Introduction and Education Plan”of Shandong Colleges and Universities(Grant No.Lu Jiao Ke Han[2021]No.51)。
文摘Intense precipitation infiltration and intricate excavation processes are crucial factors that impact the stability and security of towering and steep rock slopes within mining sites.The primary aim of this research was to investigate the progression of cumulative failure within a cracked rock formation,considering the combined effects of precipitation and excavation activities.The study was conducted in the Huangniuqian eastern mining area of the Dexing Copper Mine in Jiangxi Province,China.An engineering geological investigation was conducted,a physical model experiment was performed,numerical calculations and theoretical analysis were conducted using the matrix discrete element method(Mat-DEM),and the deformation characteristics and the effect of the slope angle of a fractured rock mass under different scenarios were examined.The failure and instability mechanisms of the fractured rock mass under three slope angle models were analyzed.The experimental results indicate that as the slope angle increases,the combined effect of rainfall infiltration and excavation unloading is reduced.A novel approach to simulating unsaturated seepage in a rock mass,based on the van Genuchten model(VGM),has been developed.Compared to the vertical displacement observed in a similar physical experiment,the average relative errors associated with the slope angles of 45,50,and 55were 2.094%,1.916%,and 2.328%,respectively.Accordingly,the combined effect of rainfall and excavation was determined using the proposed method.Moreover,the accuracy of the numerical simulation was validated.The findings contribute to the seepage field in a meaningful way,offering insight that can inform and enhance existing methods and theories for research on the underlying mechanism of ultra-high and steep rock slope instability,which can inform the development of more effective risk management strategies.
基金supported by grants from Guizhou Nursing Vocational College Foundation(No.gzhlyj2023-04)Guizhou Nursing Vocational College Foundation(No.gzhlyj2021-02)+1 种基金Science and Technology Foundation of Guizhou Provincial Health Committee(No.gzwkj2022-518)Nature Science Foundation of Beijing,China(No.7214253).
文摘Objective:SOX11 is expressed in numerous malignancies,including hepatocellular carcinomas(HCC),but its oncogenic function has not been elucidated.Here,we performed a comprehensive bioinformatics analysis of the Liver Hepatocellular Carcinoma(LIHC)dataset to investigate the function of SOX11 in tumorgenesis.Methods:SOX11 expression data from The Cancer Genome Atlas(TCGA)and Gene Expression Omnibus(GEO)were validated by immunohistochemistry(IHC).Co-expression,differential expression,and functional analyses utilized TCGA-LIHC,Timer 2.0,Metascape,GTEx,and LinkedOmics databases.Associations with immune infiltration,ferroptosis,and immune checkpoint genes were assessed.Genetic changes were explored via CBioPortal.Logistic regression,receiver operating characteristic curve(ROC),Kaplan-Meier analysis,and nomogram modeling evaluated associations with HCC clinicopathological features.SOX11’s impact on proliferation and migration was studied in HepG2 and HuH7 cell lines.Results:SOX11 was significantly elevated in HCC tumors compared to controls.SOX11-associated genes exhibited differential expression in pathways involving extracellular membrane ion channels.Significant associations were found between SOX11 levels,immune infiltration,ferroptosis,and immune checkpoint genes in HCC tissue.SOX11 levels correlated with HCC stage,histologic grade,and tumor status,and independently predicted overall and disease-specific survival.SOX11 expression effectively distinguished between tumor and normal liver tissue.Spearman correlations highlighted a significant relationship between SOX11 and ferroptosis-associated genes.Decreased SOX11 levels in HepG2 and HuH7 cells resulted in reduced proliferation and migration.Conclusions:SOX11 was found to represent a promising biomarker within HCC diagnosis and prognosis together with being a possible drug-target.
基金supported by grants from the Natural Science Foundation of Hunan Province(2022JJ80044)the Youth Science Foundation of Xiangya Hospital(2019Q13).
文摘Finding biomarkers for immunotherapy is an urgent issue in cancer treatment.Cellular retinoic acid-binding protein 2(CRABP2)is a controversial factor in the occurrence and development of human tumors.However,there is limited research on the relationship between CRABP2 and immunotherapy response.This study found that negative correlations of CRABP2 and immune checkpoint markers(PD-1,PD-L1,and CTLA-4)were observed in breast invasive carcinoma(BRCA),skin cutaneous melanoma(SKCM),stomach adenocarcinoma(STAD)and testicular germ cell tumors(TGCT).In particular,in SKCM patients who were treated with PD-1 inhibitors,high levels of CRABP2 predicted poor prognosis.Additionally,CRABP2 expression was elevated in cancer-associated fibroblasts(CAFs)at the single-cell level.The expression of CRABP2 was positively correlated with markers of CAFs,such as MFAP5,PDPN,ITGA11,PDGFRα/βand THY1 in SKCM.To validate the tumor-promoting effect of CRABP2 in vivo,SKCM xenograft mice models with CRABP2 overexpression have been constructed.These models showed an increase in tumor weight and volume.Enrichment analysis indicated that CRABP2 may be involved in immunerelated pathways of SKCM,such as extracellular matrix(ECM)receptor interaction and epithelial-mesenchymal transition(EMT).The study suggests that CRABP2 may regulate immunotherapy in SKCM patients by influencing infiltration of CAFs.In conclusion,this study provides new insights into the role of CRABP2 in immunotherapy response.The findings suggest that CRABP2 may be a promising biomarker for PD-1 inhibitors in SKCM patients.Further research is needed to confirm these findings and to explore the clinical implications of CRABP2 in immunotherapy.
文摘Background: A major cause of cancer death worldwide is bladder cancer, which is the most common malignant tumor of the urinary tract. PAEP is a member of the kernel lipocalin superfamily whose members share relatively low sequence similarity but have highly conserved exon/intron structure and three-dimensional protein folding. Most lipocalins are clustered on the long arm of chromosome 9. The purpose of this study was to clarify the correlation between PAEP expression level and bladder cancer. Methods: In the TCGA database, we obtained clinical and RNA sequencing data of 431 BLCA patients, including 412 BLCA tissues and 19 normal bladder tissues in the study. Analyses of bioinformatics were conducted in this study to determine the role of PAEP in bladder cancer. A quantitative real-time PCR method was used to quantitate the gene expression profile. Additionally, the effect of PAEP on tumor immune infiltration and prognosis was analyzed. Results: PAEP was a poor prognostic biomarker of bladder cancer because it was significantly upregulated. bladder cancer patients with higher PAEP expression had poor outcomes. An AUC of 0.780 was calculated from the area under the ROC curve. PAEP was associated with T stage, pathologic stage, Histologic grade and Subtype of bladder cancer patients, and served as an independent predictor of overall survival in bladder cancer patients. Functional enrichment analysis revealed PAEP was obviously enriched in pathways connected with carcinogenesis and immunosuppression. The expression of PAEP was significantly associated with tumor immune cells and immune checkpoints according to ssGSEA and Spearman correlation analysis. Conclusions: In this study, we screened and detected a mRNA, PAEP is a prognostic and immune-related biomarker in BLCA, which may contribute to the early diagnosis and treatment of BLCA.
文摘Diamond/aluminium composites have attracted attention in the field of thermal management of electronic packaging for their excellent properties.In order to solve the interfacial problem between diamond and aluminium,a novel process combining pressure infiltration with vacuum-assisted technology was proposed to prepare diamond/aluminum composites.The effect of diamond particle size on the microstructure and properties of the diamond/Al-12Si composites was investigated.The results show that the diamond/Al-12Si composites exhibit high relative density and a uniform microstructure.Both thermal conductivity and coefficient of thermal expansion increase with increasing particle size,while the bending strength exhibits the opposite trend.When the average diamond particle size increases from 45μm to 425μm,the thermal conductivity of the composites increases from 455 W·m^(-1)·K^(-1)to 713 W·m^(-1)·K^(-1)and the coefficient of thermal expansion increases from 4.97×10^(-6)K^(-1)to 6.72×10^(-6)K^(-1),while the bending strength decreases from 353 MPa to 246 MPa.This research demonstrates that high-quality composites can be prepared by the vacuum-assisted pressure infiltration process and the thermal conductivity of the composites can be effectively improved by increasing the diamond particle size.
基金National Key R&D Program of China(2022YFB3707700)Shanghai Science and Technology Innovation Action Plan(21511104800)+3 种基金National Natural Science Foundation of China(52172111)National Science and Technology Major Project(2017-IV-0005-0042)Key Research Program of the Chinese Academy of Sciences(ZDRW-CN-2021-2-2)Science Center for Gas Turbine Project(P2022-B-IV-001-001)。
文摘ZrB_(2)-based ceramics typically necessitate high temperature and pressure for sintering,whereas ZrB_(2)-SiC ceramics can be fabricated at 1500℃using the process of reactive melt infiltration with Si.In comparison to the conventional preparation method,reactive synthesis allows for the more facile production of ultra-high temperature ceramics with fine particle size and homogeneous composition.In this work,ZrSi_(2),B4C,and C were used as raw materials to prepare ZrB_(2)-SiC via combination of tape casting and reactive melt infiltration herein referred to as ZBC ceramics.Control sample of ZrB_(2)-SiC was also prepared using ZrB_(2) and SiC as raw materials through an identical process designated as ZS ceramics.Microscopic analysis of both ceramic groups revealed smaller and more uniformly distributed particles of the ZrB_(2) phase in ZBC ceramics compared to the larger particles in ZS ceramics.Both sets of ceramics underwent cyclic oxidation testing in the air at 1600℃for a cumulative duration of 5 cycles,each cycle lasting 2 h.Analysis of the oxidation behavior showed that both ZBC ceramics and ZS ceramics developed a glassy SiO_(2)-ZrO_(2) oxide layer on their surfaces during the oxidation.This layer severed as a barrier against oxygen.In ZBC ceramics,ZrO_(2) is finely distributed in SiO_(2),whereas in ZS ceramics,larger ZrO_(2) particles coexist with glassy SiO_(2).The surface oxide layer of ZBC ceramics maintains a dense structure because the well-dispersed ZrO_(2) increases the viscosity of glassy SiO_(2),preventing its crystallization during the cooling.Conversely,some SiO_(2) in the oxide layer of ZS ceramics may crystallize and form a eutectic with ZrO_(2),leading to the formation of ZrSiO_(4).This leads to cracking of the oxide layer due to differences in thermal expansion coefficients,weakening its barrier effect.An analysis of the oxidation resistance shows that ZBC ceramics exhibit less increase in oxide layer thickness and mass compared to ZS ceramics,suggesting superior oxidation resistance of ZBC ceramics.
基金funded by the Natural Science Foundation of Fujian Province(Grant No.2023J011133)。
文摘Infiltration–runoff–slope instability mechanism of macropore slope under heavy rainfall is unclear.This paper studied its instability mechanism with an improved Green–Ampt(GA)model considering the dual-porosity(i.e.,matrix and macropore)and ponding condition,and proposed the infiltration equations,infiltration–runoff coupled model,and safety factor calculation method.Results show that the infiltration processes of macropore slope can be divided into three stages,and the proposed model is rational by a comparative analysis.The wetting front depth of the traditional unsaturated slope is 17.2%larger than that of the macropore slope in the early rainfall stage and 27%smaller than that of the macropore slope in the late rainfall stage.Then,macropores benefit the slope stability in the early rainfall but not in the latter.Macropore flow does not occur initially but becomes pronounced with increasing rainfall duration.The equal depth of the wetting front in the two domains is regarded as the onset criteria of macropore flow.Parameter analysis shows that macropore flow is delayed by increasing proportion of macropore domain(ω_(f)),whereas promoted by increasing ratio of saturated permeability coefficients between the two domains(μ).The increasing trend of ponding depth is sharp at first and then grows slowly.Finally,when rainfall duration is less than 3 h,ωf andμhave no significant effect on the safety factor,whereas it decreases with increasingωf and increases with increasingμunder longer duration(≥3 h).With the increase ofω_(f),the slope maximum instability time advances by 10.5 h,and with the increase ofμ,the slope maximum instability time delays by 3.1 h.
文摘BACKGROUND The complexity of the immune microenvironment has an impact on the treatment of colorectal cancer(CRC),one of the most prevalent malignancies worldwide.In this study,multi-omics and single-cell sequencing techniques were used to investigate the mechanism of action of circulating and infiltrating B cells in CRC.By revealing the heterogeneity and functional differences of B cells in cancer immunity,we aim to deepen our understanding of immune regulation and provide a scientific basis for the development of more effective cancer treatment strategies.AIM To explore the role of circulating and infiltrating B cell subsets in the immune microenvironment of CRC,explore the potential driving mechanism of B cell development,analyze the interaction between B cells and other immune cells in the immune microenvironment and the functions of communication molecules,and search for possible regulatory pathways to promote the anti-tumor effects of B cells.METHODS A total of 69 paracancer(normal),tumor and peripheral blood samples were collected from 23 patients with CRC from The Cancer Genome Atlas database(https://portal.gdc.cancer.gov/).After the immune cells were sorted by multicolor flow cytometry,the single cell transcriptome and B cell receptor group library were sequenced using the 10X Genomics platform,and the data were analyzed using bioinformatics tools such as Seurat.The differences in the number and function of B cell infiltration between tumor and normal tissue,the interaction between B cell subsets and T cells and myeloid cell subsets,and the transcription factor regulatory network of B cell subsets were explored and analyzed.RESULTS Compared with normal tissue,the infiltrating number of CD20+B cell subsets in tumor tissue increased significantly.Among them,germinal center B cells(GCB)played the most prominent role,with positive clone expansion and heavy chain mutation level increasing,and the trend of differentiation into memory B cells increased.However,the number of plasma cells in the tumor microenvironment decreased significantly,and the plasma cells secreting IgA antibodies decreased most obviously.In addition,compared with the immune microenvironment of normal tissues,GCB cells in tumor tissues became more closely connected with other immune cells such as T cells,and communication molecules that positively regulate immune function were significantly enriched.CONCLUSION The role of GCB in CRC tumor microenvironment is greatly enhanced,and its affinity to tumor antigen is enhanced by its significantly increased heavy chain mutation level.Meanwhile,GCB has enhanced its association with immune cells in the microenvironment,which plays a positive anti-tumor effect.
文摘The development of advanced aircraft relies on high performance thermal-structural materials,and carbon/carbon com-posites(C/C)composited with ultrahigh-temperature ceramics are ideal candidates.However,the traditional routes of compositing are either inefficient and expensive or lead to a non-uniform distribution of ceramics in the matrix.Compared with the traditional C/C-ZrC-SiC composites prepared by the reactive melt infiltration of ZrSi_(2),C/C-ZrB_(2)-ZrC-SiC composites prepared by the vacuum infiltration of ZrB_(2) combined with reactive melt infiltration have the higher content and more uniform distribution of the introduced ceramic phases.The mass and linear ablation rates of the C/C-ZrB_(2)-ZrC-SiC composites were respectively 68.9%and 29.7%lower than those of C/C-ZrC-SiC composites prepared by reactive melt infiltration.The ablation performance was improved because the volatilization of B_(2)O_(3),removes some of the heat,and the more uniformly distributed ZrO_(2),that helps produce a ZrO2-SiO2 continu-ous protective layer,hinders oxygen infiltration and decreases ablation.
基金the Natural Science Foundation of Shaanxi Province(Youth Projectno.2021JQ-423)the foundation of the Second Affiliated Hospital of Xi'an Jiaotong University(no.RC(XM)201706)。
文摘Background:Owing to the occurrence of primary or secondary tolerance,the efficacy of immunotherapy for hepatocellular carcinoma(HCC)patients is limited.Therefore,the mechanism underlying this tolerance needs to be further investigated.B cell–specific Moloney murine leukemia virus integration site 1(BMI1)is associated with cancer stem cell tumorigenesis,progression,and the maintenance of the self-renewal.However,the effect of BMI1 expression on immune infiltration and prognosis in HCC is still unclear.Methods:To assess the relationship between BMI1 expression and HCC prognosis and immune infiltration,the GEPIA database,TIMER database,and K-M plotter were used.TIMER database was used to determine the levels ofBMI1 in various tumor tissues and corresponding normal tissues,and examine the association between BMI1 expression and tumor-infiltrating immune cells.GEPIA database was applied to determine BMI1 expression in various tumor tissues and corresponding normal tissues.K-M Plotter was used to study the relationships among BMI1 expression,clinicopathological features,and survival rates.Results:BMI1 expression was markedly higher in various solid tumors compared with that in the respective normal tissues,including HCC,and high expression led to poor relapse-free survival and overall survival in HCC patients.BMI1 overexpression was also correlated with the infiltration of immune cells(eg,B cells,CD8+T cells,CD4+T cells,dendritic cells,neutrophils,and macrophages)and positively associated with different subsets of T cells,monocytes,and M1 macrophages,among others.Conclusions:This study demonstrates that high BMI1 expression is strongly correlated with immune infiltration and poor prognosis in HCC.Increased expression of BMI1 might thus be a potential mechanism of immune tolerance in this disease.
文摘This editorial will focus on tumor immunity and the factors that alter the tumor immune micro-environment.The role of tumor infiltrating lymphocytes(TILs)will also be discussed in detail,including the types,mechanism of action,and role.Gastric cancer(GC)often presents in the advanced stage and has various factors predicting the outcomes.The interplay of these factors and their correlation with the TILs is discussed.A literature review revealed high intratumoral TILs associated with higher grade,HER2-,and Helicobacter pylori negativity.Moreover,stromal(ST)TILs correlated with lower grade and lesser recurrence risk in GC.High TILs in ST and invasive border also correlated with mismatch repair deficiency status.Further characterization of the CD3+,CD8+,and other cells is also warranted.In the future,this complex correlation of cancer cells with the immune system can be explored for therapeutic avenues.
文摘Colorectal cancer(CRC)is a prevalent malignant tumor,with the global new cases reaching 1.9316 million and deaths reaching 935,200 in 2022.In China,therewere 555,500 new cases of CRC,with an age-standardized incidence rate of 24.07 per 10million,and 286,200 deaths.China accounts for approximately 30%of new cases and deaths from CRC worldwide,with East Asia accounting for over 75%.Initially,CRC presents as local tumor growth,but it has the potential to spread to other body parts over time.Perineural infiltration(PNI)is a relatively less discussed route of diffusion,yet it plays a crucial role in the progression and prognosis of CRC.PNI often occurs alongside local lymph nodes and distant metastases,posing challenges for treatment and management.Clinical symptoms,radiographic findings,and histopathological examination can be used to diagnose PNI with skipmetastasis.Symptoms commonly include local pain,paresthesia,andmotor impairment.Imaging helps identify the mass’s location and relationship to nerves,whereas histopathological examination confirms the diagnosis.Treatment of PNI skipmetastases is similar to other CRC metastases,including surgical resection,chemotherapy,radiotherapy,and targeted therapy.Surgical resection is the primary therapeutic approach,but the wider range of metastasis in PNI skip transfer may limit its feasibility.In cases where surgical resection is not possible,chemotherapy,radiotherapy,and targeted therapy are used to control tumor metastasis.In conclusion,PNI skip metastases increase the risk of poor prognosis for CRC,requiring a comprehensive approach with multiple treatments to prevent disease progression.Early detection and treatment are vital to improving prognosis.
基金Supported by National Natural Foundation of China,No.821742232019 Chinese and Western Medicine Clinical Collaborative Capacity Building Project for Major Difficult Diseases,No.2019-ZX-005。
文摘BACKGROUND Esophageal squamous cell carcinoma(ESCC)is one of the most common malignancies worldwide,and its development comprises a multistep process from intraepithelial neoplasia(IN)to carcinoma(CA).However,the critical regulators and underlying molecular mechanisms remain largely unknown.AIM To explore the genes and infiltrating immune cells in the microenvironment that are associated with the multistage progression of ESCC to facilitate diagnosis and early intervention.METHODS A mouse model mimicking the multistage development of ESCC was established by providing warter containing 4-nitroquinoline 1-oxide(4NQO)to C57BL/6 mice.Moreover,we established a control group without 4NQO treatment of mice.Then,transcriptome sequencing was performed for esophageal tissues from patients with different pathological statuses,including low-grade IN(LGIN),high-grade IN(HGIN),and CA,and controlled normal tissue(NOR)samples.Differentially expressed genes(DEGs)were identified in the LGIN,HGIN,and CA groups,and the biological functions of the DEGs were analyzed via Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses.The CIBERSORT algorithm was used to detect the pattern of immune cell infilt-ration.Immunohistochemistry(IHC)was also conducted to validate our results.Finally,the Luminex multiplex cytokine analysis was utilized to measure the serum cytokine levels in the mice.RESULTS Compared with those in the NOR group,a total of 681541,and 840 DEGs were obtained in the LGIN,HGIN,and CA groups,respectively.Using the intersection of the three sets of DEGs,we identified 86 genes as key genes involved in the development of ESCC.Enrichment analysis revealed that these genes were enriched mainly in the keratinization,epidermal cell differentiation,and interleukin(IL)-17 signaling pathways.CIBERSORT analysis revealed that,compared with those in the NOR group,M0 and M1 macrophages in the 4NQO group showed stronger infiltration,which was validated by IHC.Serum cytokine analysis revealed that,compared with those in the NOR group,IL-1βand IL-6 were upregulated,while IL-10 was downregulated in the LGIN,HGIN,and CA groups.Moreover,the expression of the representative key genes,such as S100a8 and Krt6b,was verified in external human samples,and the results of immunohistochemical staining were consistent with the findings in mice.CONCLUSION We identified a set of key genes represented by S100a8 and Krt6b and investigated their potential biological functions.In addition,we found that macrophage infiltration and abnormal alterations in the levels of inflam-mation-associated cytokines,such as IL-1β,IL-6,and IL-10,in the peripheral blood may be closely associated with the development of ESCC.
基金supported by the Modern Traditional Chinese Medicine Haihe Laboratory science and technology project(22HHZYSS00005)and the National Administration of Traditional Chinese Medicine Young Qihuang Scholar Project.
文摘Background:This study aims to explore the involvement of ferroptosis-related genes and pathogenesis in pancreatic cancer and predict potential therapeutic interventions using Traditional Chinese Medicine(TCM).Methods:We utilized gene expression datasets,ferroptosis upregulated genes and applied machine learning algorithms,including LASSO and SVM-RFE,to identify key ferroptosis-related genes in pancreatic cancer.Perform Gene Ontology,Kyoto Encyclopedia of Genes and Genomes,and Disease Ontology enrichment analysis,immune infiltration analysis and correlation analysis between immune infiltrating cells and characteristic genes on differentially expressed genes using the R software package.Retrieve potential traditional Chinese medicine for targeted ferroptosis gene therapy for pancreatic cancer through Coremine and Herb databases.Results:Seventeen feature genes were identified,with significant implications for immune cell infiltration in pancreatic cancer.The results of immune cell infiltration analysis showed that B cells naive,B cells memory,T cells regulatory,and M0 macrophages were significantly upregulated in pancreatic cancer patients;Mast cells resting were significantly downregulated.Chinese herbal medicines such as ginkgo,turmeric,ginseng,Codonopsis pilosula,Zedoary turmeric,deer tendons,senna leaves,Guanmu Tong,Huangqi,and Banzhilian are potential drugs for targeted ferroptosis gene therapy for pancreatic cancer.Conclusion:TIMP1 emerged as a key gene,with several TCM herbs predicted to modulate its expression,offering new avenues for treatment.
基金Supported by the Natural Science Foundation of Ningxia Hui Autonomous Region(2022AAC03661)Financial Project of Geological Bureau of Ningxia Hui Autonomous Region(NXCZ20220201).
文摘In order to compare the influence of different soil types and stratification on water infiltration capacity,two main types of soil in the desert steppe,sierozem(S)and aeolian sandy soil(A),were selected,and infiltration simulation tests were conducted on homogeneous soil and layered soil(layer thickness 5,10,and 20 cm),respectively.The results show that during the whole experiment,there was a small difference between S5A95(aeolian sandy soil 95 cm thick was covered with sierozem 5 cm thick)and S10A90(aeolian sandy soil 90 cm thick was covered with sierozem 10 cm thick)in the wetting front process,infiltration rate and cumulative infiltration,but there was a significant difference between S5A95 and S20A80(aeolian sandy soil 80 cm thick was covered with sierozem 20 cm thick).In the initial infiltration stage,there was no significant difference between A5S95(sierozem 95 cm thick was covered with aeolian sandy soil 5 cm thick)and A10S90(sierozem 90 cm thick was covered with aeolian sandy soil 10 cm thick).However,with the increase of infiltration time,the wetting front process,A5S95,A10S90 and A20S80 had significant differences in terms of wetting front process,infiltration rate and cumulative infiltration.The infiltration capacity of A was significantly higher than that of S.Combined with linear R 2 value and model parameters,the three infiltration models were comprehensively compared,and the fitting process and results of the general empirical model for the infiltration process of homogeneous soil and layered soil showed good results.Three models were used to simulate the water infiltration process of layered soil with different textures,and the order of the effect is as follows:general empirical model>Kostiakov model>Philip model.Soil type and layer thickness had a great influence on water infiltration process.When sierozem was covered with aeolian sandy soil 20 cm thick,the infiltration capacity was the best.As aeolian sandy soil was covered with sierozem 10 cm thick,the infiltration effect was the worst.Therefore,once coarse graying occurs on the surface of sierozem(the thickness of sand is more than 20 cm)or when the content of fine particles overlying aeolian sandy soil(the thickness of silt and clay soil is more than 10 cm)during ecological restoration is high,the soil hydrological characteristics will change significantly,which may lead to changes in vegetation types and even ecosystem structure.
基金supported by the National Natural Science Foundation of China[No.81602020]the Tianjin Medical University Cancer Institute&Hospital Research Project[No.1805].
文摘Background:The molecular mechanism underlying the involvement of the Transferrin receptor(TFRC)in cervical cancer remains poorly understood.This study aims to elucidate the role of TFRC in cervical cancer by analyzing data from The Cancer Genome Atlas(TCGA)and Genotype-Tissue Expression(GTEx)databases.Methods:TFRC protein expression was obtained from Human Protein Altas(HPA).All datas were collected from TCGA and GTEx.In this study,we analyzed the expression of TFRC in cervical cancer and its clinical significance.Through Kyoto Encyclopedia of Genes and Genomes(KEGG)and Gene set enrichment analyses(GSEA),investigated the related molecular pathways of TFRC.The relationship between TFRC and immune infiltration was then examined.The prognosis of different immune cell subsets was then analyzed after dividing cervical cancer patients into high and low expression of TFRC groups.Results:TFRC is highly expressed in various tumor tissues compared to control normal tissues,including cervical cancer.An increased expression of TFRC was associated with higher Tumor(T)and Node(N)stage,as well as a higher clinical stage.Kaplan–Meier(KM)survival analysis investigated that higher TFRC expression patients have a poor overall survival(OS),disease specific survival(DSS)and progress free interval(PFI).Both KEGG and GSEA enriched signaling pathway by high TFRC and low TFRC groups.There was a significant negative linear correlation between TFRC expression and immune infiltration.TFRC affects the prognosis of cervical cancer patients through immune pathway.Conclusions:Cervical cancer patients with TFRC expression may have a worse prognosis.
文摘Background:Hepatocellular carcinoma(HCC)is the fourth leading cause of cancer-related deaths globally.Splicing factor proline and glutamine-rich(SFPQ)is a multifunctional protein that controls various biological functions.As a potential therapeutic target and a promising prognostic indicator,the potential effects and processes of SFPQ in HCC require further investigation.Methods:The RNA sequencing data were obtained from the Gene Expression Omnibus,International Cancer Genome Consortium,and The Cancer Genome Atlas databases to analyze SFPQ expression and differentially expressed genes(DEGs).We utilized the LinkedOmics database to identify co-expressed genes.A Venn diagram was constructed to determine the overlapping genes between the DEGs and the co-expressed genes.Functional enrichment analysis was performed on the overlapping genes and DEGs.Furthermore,our study involved functional enrichment analysis,a protein-protein interaction network analysis,and an analysis of immune cell infiltration.The cBioPortal and Tumor Immune Single-cell Hub were utilized to investigate the genetic alterations of SFPQ and the single-cell transcriptome visualization of the tumor microenvironment.A ceRNA network was established with the assistance of the ENCORI website.Finally,we elucidated the clinical significance of SFPQ in HCC by employing Kaplan-Meier survival analysis,univariate and multivariate Cox regression,and prognostic nomogram models.Results:The expression of SFPQ in HCC tissues was significantly elevated compared to normal tissues.GSEA results indicated that increased expression of SFPQ was associated with pathways related to HCC.The ceRNA network,including SFPQ,hsa-miR-101-3p,AC023043.4,AC124798.1,AC145207.5,and GSEC,was constructed with the assistance of ENCORI.High SFPQ expression was related to a poor prognosis in HCC and its subtypes.Univariate and multivariate Cox regression analysis showed that elevated SFPQ expression is an independent predictive factor.Conclusions:The overexpression of SFPQ may serve as a potential prognostic biomarker,indicating a poor prognosis in HCC.
基金Supported by the Chinese Academy of Sciences Center for Excellence and Synergetic Innovation Center in Quantum Information and Quantum Physics,Shanghai Branch,University of Science and Technology of Chinathe National Natural Science Foundation of China under Grant No 11405172
文摘Quantum random number generators adopting single negligible dead time of avalanche photodiodes (APDs) photon detection have been restricted due to the non- We propose a new approach based on an APD array to improve the generation rate of random numbers significantly. This method compares the detectors' responses to consecutive optical pulses and generates the random sequence. We implement a demonstration experiment to show its simplicity, compactness and scalability. The generated numbers are proved to be unbiased, post-processing free, ready to use, and their randomness is verified by using the national institute of standard technology statistical test suite. The random bit generation efficiency is as high as 32.8% and the potential generation rate adopting the 32× 32 APD array is up to tens of Gbits/s.