When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the buildin...When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the building utilizing old building drawings or robots.To propose an efficient solution for fast search and rescue work of firefighters,this study investigates the generation of up-to-date digital maps for disaster sites by tracking the collapse situation,and identifying the information of obstacles which are risk factors,using an artificial intelligence algorithm based on low-cost robots.Our research separates the floor by using the mask regional convolutional neural network(R-CNN)algorithm,and determines whether the passage is collapsed or not.Then,in the case of a passage that can be searched,the floor pattern of the obstacles that exist on the floor that has not collapsed is analyzed,and obstacles are searched utilizing an image processing algorithm.Here,we can detect various unknown as well as known obstacles.Furthermore,the locations of obstacles can be estimated using the pixel values up to the bounding box of an existing detected obstacle.We conduct experiments using the public datasets collected by Carnegie Mellon university(CMU)and data collected by manipulating a low-cost robot equipped with a smartphone while roaming five buildings in a campus.The collected data have various floor patterns for objectivity and obstacles that are different from one another.Based on these data,the algorithm for detecting unknown obstacles of a verified study and estimating their sizes had an accuracy of 93%,and the algorithm for estimating the distance to obstacles had an error rate of 0.133.Through this process,we tracked collapsed passages and composed up-to-date digital maps for disaster sites that include the information of obstacles that interfere with the search and rescue work.展开更多
Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study ...Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study aims to increase the efficiency of search and rescue operations and the safety offirefigh-ters by detecting and identifying the disaster site by recognizing collapsed areas,obstacles,and rescuers on-site.A fusion algorithm combining a camera and three-dimension light detection and ranging(3D LiDAR)is proposed to detect and loca-lize the interiors of disaster sites.The algorithm detects obstacles by analyzingfloor segmentation and edge patterns using a mask regional convolutional neural network(mask R-CNN)features model based on the visual data collected from a parallelly connected camera and 3D LiDAR.People as objects are detected using you only look once version 4(YOLOv4)in the image data to localize persons requiring rescue.The point cloud data based on 3D LiDAR cluster the objects using the density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm and estimate the distance to the actual object using the center point of the clustering result.The proposed artificial intelligence(AI)algorithm was verified based on individual sensors using a sensor-mounted robot in an actual building to detectfloor surfaces,atypical obstacles,and persons requiring rescue.Accordingly,the fused AI algorithm was comparatively verified.展开更多
This paper describes the dynamic characteristics of a damaged nine story building in Sendal during the 2011 Tohoku Earthquake. Dynamic hysteresis characteristic is investigated. The system identification using the ext...This paper describes the dynamic characteristics of a damaged nine story building in Sendal during the 2011 Tohoku Earthquake. Dynamic hysteresis characteristic is investigated. The system identification using the extended Kalman filter determined the amplitude dependency of natural frequency and damping factor, which are consistent with damage feature. Occurrence of partial uplifting in the transverse direction is suggested by the induced higher harmonics based on the wavelet analysis. Historical change of the amplitude dependent dynamic characteristics is also discussed based on the long-term monitoring data from microtremor level to strong motion level.展开更多
Exposure in water-damaged buildings (WDB) to airborne bioaerosols including metabolic products of toxigenic fungi, bacteria and actinomycetes;and inflammagens, can lead to a persistent innate immune inflammatory illne...Exposure in water-damaged buildings (WDB) to airborne bioaerosols including metabolic products of toxigenic fungi, bacteria and actinomycetes;and inflammagens, can lead to a persistent innate immune inflammatory illness. This illness, termed a chronic inflammatory response syndrome (CIRS-WDB), is systemic with symptoms acquired from multiple organ systems. Treatment of CIRS-WDB has progressed rapidly as a better understanding of the inflammatory pathophysiology has led to targeted, sequential therapies. The fundamental basis of uncontrolled innate immune responses, the humoral deficiency of regulatory neuropeptides melanocyte stimulating hormone (MSH) or vasoactive intestinal polypeptide (VIP), seen in over 98% of pa tients, has not consistently responded to any treatment modality. Use of replacement VIP has been attempted anecdotally;VIP replacement therapies show promise in short term studies but longer therapies have not been attempted. Here we report an open label trial of 20 patients with refractory CIRS-WDB illness who took replacement VIP in a nasal spray for at least 18 months with confirmation of durable efficacy and absence of significant side effects. These 20 patients were similar in symptoms and lab find- ings to three previously published cohorts in- volving 1829 patients and 169 controls. Dosage of VIP was titrated downwards from four to zero doses a day to determine minimum effective dose, and retitrated upwards for maximum improvement over time. The trial showed that VIP therapy safely 1) reduced refractory symptoms to equal controls;2) corrected inflammatory parameters C4a, TGF beta-1, VEGF, MMP9;3) corrected estradiol, testosterone and 25-OH Vitamin D;4) returned pulmonary artery systolic pressure (PASP) during exercise to normal;and 5) enhanced quality of life in 100% of trial patients. Subsequent identification of correction of T-regulatory cell levels supports the potential role of VIP in both innate and adaptive immune function.展开更多
A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were sei...A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were seismically designed achieved the desired seismic fortification target; they sustained less damage than the non-seismically designed buildings. Among the seismically designed buildings investigated, RC frame buildings performed the best in terms of seismic resistance. Masonry buildings with a ground story of RC frame structure were the second best, and masonry buildings performed the worst. Considering building height, multistory buildings sustained more severe damage than high-rise buildings and 2- and 3-story buildings. Compared to residential buildings, public buildings, such as schools and hospitals, suffered more severe damage.展开更多
The extensive damage to buildings caused by the Nepal Ms8.1 earthquake has attracted much attention by the international community.Afterthe preliminary scientific investigations on the different affected areas inNepal...The extensive damage to buildings caused by the Nepal Ms8.1 earthquake has attracted much attention by the international community.Afterthe preliminary scientific investigations on the different affected areas inNepal,the construction and damage characteristics of five different types of buildings commonly existing in Nepal were discussed and the reasons of their disaster performance were analyzed.Types of buildings investigated include reinforced concrete(RC) frame structures,rubble structures,brick-wood structures,raw soil structures,and brick-wood structures of historic buildings.In addition,the weak links of the seismic design were pointed out,which was very important for the post-earthquake reconstruction and recovery,and gave a preliminary explanations for the damage experienced.展开更多
A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been...A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the "Standard for classification of seismic protection of building constructions GB50223-2008" and "Code for Seismic Design of Buildings GB50011-2001." The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and precast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.展开更多
The Ms8.0 Wenchuan earthquake in 2008 caused huge casualties, economic losses, and building damages , which are analyzed. The results show that damages of houses designed according to the current seismic code were sig...The Ms8.0 Wenchuan earthquake in 2008 caused huge casualties, economic losses, and building damages , which are analyzed. The results show that damages of houses designed according to the current seismic code were significantly smaller than those without such design, suggesting that the code has achieved the desired goal of seismic fortification. Buildings of different kinds of structures showed large differences in damages : Houses with steel-frames and shear walls or steel structures suffered the least damages ; those with frames or with brick-and-concrete structures suffered more; old cottages, the most.展开更多
Building collapse is a significant cause of earthquake-related casualties; therefore, the rapid assessment of buildings damage is important for emergency management and rescue. Airborne light detection and ranging (L...Building collapse is a significant cause of earthquake-related casualties; therefore, the rapid assessment of buildings damage is important for emergency management and rescue. Airborne light detection and ranging (LiDAR) can acquire point cloud data in combination with height values, which in turn provides detailed information on building damage. However, the most previous approaches have used optical images and LiDAR data, or pre- and post-earthquake LiDAR data, to derive building damage information. This study applied surface normal algorithms to extract the degree of building damage. In this method, the angle between the surface normal and zenith (0) is used to identify damaged parts of a building, while the ratio of the standard deviation to the mean absolute deviation (σ/δ) of θ is used to obtain the degree of building damage. Quantitative analysis of 85 individual buildings with different roof types (i.e., flat top or pitched roofs) was conducted, and the results confirm that post-earthquake single LiDAR data are not affected by roof shape. Furthermore, the results confirm that θ is correlated to building damage, and that σ/δ represents an effective index to identify the degree of building damage.展开更多
The seismic vulnerability index(Kg) is a parameter that depends on the dynamic properties of soil. With this parameter, it is possible to evaluate the vulnerability of a point-based site under strong ground motion. Si...The seismic vulnerability index(Kg) is a parameter that depends on the dynamic properties of soil. With this parameter, it is possible to evaluate the vulnerability of a point-based site under strong ground motion. Since it is related to the natural vibration period and amplification factor, the parameter can be calculated for both soil and structure. In this study, HVSR microtremor measurements are recorded at more than 200 points in the Van region to generate a seismic vulnerability index map. After generating the map, it is determined that the hazard potential and seismic vulnerability index is high at the sites close to Van Lake and at the densely populated city center. Damage information of the buildings investigated after the 2011 Van earthquakes(Mw = 7.1) are placed on the seismic vulnerability index map and it is realized that there may be a correlation between the damage and the seismic vulnerability index. There is a high correlation, approximately 80 percent, between the damage rate map based on the damaged building data and the K_g values. In addition, vulnerability indexes of buildings are calculated and the effect of local soil conditions and building properties on the damage levels are determined. From the results of this study and the site observations after the 2011 Van earthquakes, it is found that structural damage is not only structure-dependent but is also related to the dynamic behavior of soil layers and local soil conditions.展开更多
In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings...In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings under the impact of boulders, a "block-joint" model is developed using threedimensional discontinuous deformation analysis(3-D DDA) to simulate the behaviour of the "brick-mortar" structure. The "block-joint" model is used to capture not only the large displacement and deformation of individual bricks but also the large-scale sliding and opening along the mortar between the bricks. The linear elastic constitutive model is applied to account for the non-plastic deformation behaviour of brick materials. Furthermore, the mechanical characteristics of the mortar are represented using the Mohr-Coulomb and Drucker-Prager criteria. To propose safe structural design schemes and effective reinforcement for brick masonry buildings, seven construction techniques are considered, includingdifferent grades of brick and mortar, effective shear areas and reinforced members. The proposed 3-D DDA model is used to analyse the velocity distribution and the key point displacements of the brick masonry building under the impact of boulders. The results show that upgrading the brick and mortar, increasing the wall thickness, making full use of the wall thickness, and adding a circular beam and structural column are very effective approaches for improving the impact resistance of brick masonry buildings.展开更多
Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage gr...Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage grabe caused by coal mining. Fuzzy comprehensive evaluation,considering some factors of buildings’ fracture, has been applied to analyze the masonry structure buildings’ damage grade affer coal mining in this paper. It provides a scientific basis for buildings’reidercement before mining and maintenance or compensation after mining.展开更多
As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum ...As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum level of subsidence in the area since 1976 to 2006 is 863 mm, and the area with an accumulative subsidence more than 200 mm has reached 33.1 km2 by the end of 2006. Over ten cases of building crack due to ground subsidence have already been observed. Spatial variation in ground subsi- dence often leads to a corresponding pattern of ground deformation. Buildings and underground infrastructures have been under a higher risk of damage in locations with greater differential ground deformation. Governmental guideline in China classifies build- ing damages into four different levels, based on the observable measures such as the width of wall crack, the degree of door and window deformation, the degree of wall inclination and the degree of structural destruction. Building damage level (BDL) is esti- mated by means of ground deformation analysis in terms of variations in slope gradient and curvature. Ground deformation analysis in terms of variations in slope gradient has shown that the areas of BDL III and BDL II sites account for about 0.013 km2 and 0.284 km2 respectively in 2006, and the predicted areas of BDL (define this first) III and II sites will be about 0.029 km2 and 0.423 km2 respectively by 2010. The situation is getting worse as subsidence continues. That calls for effective strategies for subsidence miti- gation and damage reduction, in terms of sustainable groundwater extraction, enhanced monitoring and the establishment of early warning systems.展开更多
The outline and typical characteristics of damages to building in Jiangyou city and Anxian county (intensity Ⅷ), Mianyang city and Deyang city (intensity Ⅶ) are introduced in the paper. The damage ratios, based ...The outline and typical characteristics of damages to building in Jiangyou city and Anxian county (intensity Ⅷ), Mianyang city and Deyang city (intensity Ⅶ) are introduced in the paper. The damage ratios, based on the sample statistics of multi-story brick buildings together with multi-story brick buildings with RC frame at first story (BBF), are presented. Then some typical damages, such as horizontal cricks of brick masonry buildings, X-shaped cricks on the walls under windows, the damages to columns, beams and infill walls of frame buildings and the damage to half circle-shaped masonry walls, are discussed.展开更多
Based on the field investigation of the building types and damage caused to them by the Hutubi M_S6.2 earthquake on December 8,2016,we analyzed the damage characteristics and causes for different types of buildings. I...Based on the field investigation of the building types and damage caused to them by the Hutubi M_S6.2 earthquake on December 8,2016,we analyzed the damage characteristics and causes for different types of buildings. In conclusion we put forward some suggestions for the restoration and reconstruction in the earthquake affected area in future.展开更多
Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dyn...Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results.展开更多
In this paper,the tilt photography data acquisition and three-dimensional modeling of the Tashkurgan MS5.5 earthquake in Xinjiang are conducted using the tilt photography system of the Rotor UAV. The three-dimensional...In this paper,the tilt photography data acquisition and three-dimensional modeling of the Tashkurgan MS5.5 earthquake in Xinjiang are conducted using the tilt photography system of the Rotor UAV. The three-dimensional model is used to interpret the earthquake damage on buildings in the mega-earthquake area in order to acquire different-level house damage in the Kuzirun village disaster area. In addition,the characteristics of seismic damage on typical buildings are analyzed. The results show that the main collapsed houses in the mega-earthquake area are sand-stone buildings,of which about 39% are sand-stone buildings. Several brick-wood buildings and brick-concrete buildings are seriously damaged,while the buildings with frame structures are mainly slightly damaged,and the houses near the macro-epicenter of the earthquake are all in good conditions. Three-dimensional tilt photography technology can vividly display the scene of earthquake disaster,and can provide significant demonstration in building damage degree together with detailed analysis of disaster situation.展开更多
The 2011 Tsunami event in the eastern coastal area of Japan caused a huge amount of damages or devastations on buildings. To this date, several field surveys have been conducted which provide detailed information abou...The 2011 Tsunami event in the eastern coastal area of Japan caused a huge amount of damages or devastations on buildings. To this date, several field surveys have been conducted which provide detailed information about inundation areas and building damage characteristics in attacking east coastal areas by this tsunami. In this study, building damage data of Ishinomaki city, with special attention to the plain coast affected area, are classified and analyzed using data surveyed by the Ministry of Lands, Infrastructure and Transportation of Japan (MLIT) for more than 52,000 structures. The classification includes information on six levels of damage, four types of building materials and damages due to tsunami inundation for each building material which are necessary information for an effective hazard mitigation. Notably, damage level percentage distribution of different building materials is plotted for different inundation depth ranges in several sets of figures. This graphic illustration not only shows a better resistant performance of Reinforced Concrete (RC) and steel buildings over wood or other buildings for all inundation depth ranges, but also can explain clearly the inundation-induced damage behavior for each building material as well as the threshold depth for each damage level. Moreover, this research contains an analysis of vulnerable areas due to the coastal topography and the geographical factors. Surveyed data provided by Geospatial information authority of Japan (GSI) that classifies Ishinomaki plain coast area into three classes are compared with the damage map produced using an Analytical Hierarchy Process (AHP) methodology in ArcGIS 10.2 environment. The influence of key geographical features on tsunami-induced building damage, notably Kitakami river and water canals flooding, is taken into account with respect to the weighting of factors. A good agreement produced building damage map with surveyed GSI data shows the power of a GIS tool based on the AHP approach for tsunami damage assessment. The results of this study are useful to understand the damage behavior of buildings with different structural materials located in coastal areas vulnerable to the tsunami disaster.展开更多
The feasibility analysis of projects for the preservation of the historical heritage buildings is an important problem concerning the evaluation of "the total cost of intervention", which includes all the future dam...The feasibility analysis of projects for the preservation of the historical heritage buildings is an important problem concerning the evaluation of "the total cost of intervention", which includes all the future damage costs. The total cost of intervention represents a suitable measure of the expected deterioration risk and its evolution obviously depends on the damage process which buildings are subjected to. That damage phenomena affecting masonry buildings pleased into an aggressive environment are suitably modelled by renewal processes: this happens both in the case of catastrophic events, or in the case of the so-called "natural aging", in which damage comes off gradually in time. In the hypothesis ofa Markovian renewal process (Mrp) describing the damage process, the total cost of all the future damage is evaluated taking into account both the damage aspects: damages due to catastrophic aspects and damages due to aggressive environment, supposing different maintenance and/or rehabilitation scenarios. A semi-Markov process (s-Mp) is defined to model the damage rehabilitation history of buildings in presence of seismic events, natural ageing and rehabilitation strategies. The expected rewards connected to the process are defined; they represent a significant measure of the risk.展开更多
In this article,we present a new data collection that combines information about earthquake damage with seismic shaking.Starting from the Da.D.O.database,which provides information on the damage of individual building...In this article,we present a new data collection that combines information about earthquake damage with seismic shaking.Starting from the Da.D.O.database,which provides information on the damage of individual buildings subjected to sequences of past earthquakes in Italy,we have generated ShakeMaps for all the events with magnitude greater than 5.0 that have contributed to these sequences.The sequences under examination are those of Irpinia 1980,Umbria Marche 1997,Pollino 1998,Molise 2002,L’Aquila 2009 and Emilia 2012.In this way,we were able to combine,for a total of the 117,695 buildings,the engineering parameters included in Da.D.O.,but revised and reprocessed in this application,and the ground shaking data for six different variables(namely,intensity in MCS scale,PGA,PGV,SA at 0.3s,1.0s and 3.0s).The potential applications of this data collection are innumerable:from recalibrating fragility curves to training machine learning models to quantifying earthquake damage.This data collection will be made available within Da.D.O.,a platform of the Italian Department of Civil Protection,developed by EUCENTRE.展开更多
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/This research was funded by Korea Transportation Science and Technology Promotion Agency(No.21QPWO-B152223-03),Received by Chulsu Kim.https://www.kaia.re.kr/.
文摘When firefighters are engaged in search and rescue missions inside a building at a risk of collapse,they have difficulty in field command and rescue because they can only simplymonitor the situation inside the building utilizing old building drawings or robots.To propose an efficient solution for fast search and rescue work of firefighters,this study investigates the generation of up-to-date digital maps for disaster sites by tracking the collapse situation,and identifying the information of obstacles which are risk factors,using an artificial intelligence algorithm based on low-cost robots.Our research separates the floor by using the mask regional convolutional neural network(R-CNN)algorithm,and determines whether the passage is collapsed or not.Then,in the case of a passage that can be searched,the floor pattern of the obstacles that exist on the floor that has not collapsed is analyzed,and obstacles are searched utilizing an image processing algorithm.Here,we can detect various unknown as well as known obstacles.Furthermore,the locations of obstacles can be estimated using the pixel values up to the bounding box of an existing detected obstacle.We conduct experiments using the public datasets collected by Carnegie Mellon university(CMU)and data collected by manipulating a low-cost robot equipped with a smartphone while roaming five buildings in a campus.The collected data have various floor patterns for objectivity and obstacles that are different from one another.Based on these data,the algorithm for detecting unknown obstacles of a verified study and estimating their sizes had an accuracy of 93%,and the algorithm for estimating the distance to obstacles had an error rate of 0.133.Through this process,we tracked collapsed passages and composed up-to-date digital maps for disaster sites that include the information of obstacles that interfere with the search and rescue work.
基金supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(No.2020R1I1A3068274),Received by Junho Ahn.https://www.nrf.re.kr/supported by the Korea Agency for Infrastructure Technology Advancement(KAIA)by the Ministry of Land,Infrastructure and Transport under Grant(No.22QPWO-C152223-04),Received by Chulsu Kim.https://www.kaia.re.kr/.
文摘Existingfirefighting robots are focused on simple storage orfire sup-pression outside buildings rather than detection or recognition.Utilizing a large number of robots using expensive equipment is challenging.This study aims to increase the efficiency of search and rescue operations and the safety offirefigh-ters by detecting and identifying the disaster site by recognizing collapsed areas,obstacles,and rescuers on-site.A fusion algorithm combining a camera and three-dimension light detection and ranging(3D LiDAR)is proposed to detect and loca-lize the interiors of disaster sites.The algorithm detects obstacles by analyzingfloor segmentation and edge patterns using a mask regional convolutional neural network(mask R-CNN)features model based on the visual data collected from a parallelly connected camera and 3D LiDAR.People as objects are detected using you only look once version 4(YOLOv4)in the image data to localize persons requiring rescue.The point cloud data based on 3D LiDAR cluster the objects using the density-based spatial clustering of applications with noise(DBSCAN)clustering algorithm and estimate the distance to the actual object using the center point of the clustering result.The proposed artificial intelligence(AI)algorithm was verified based on individual sensors using a sensor-mounted robot in an actual building to detectfloor surfaces,atypical obstacles,and persons requiring rescue.Accordingly,the fused AI algorithm was comparatively verified.
文摘This paper describes the dynamic characteristics of a damaged nine story building in Sendal during the 2011 Tohoku Earthquake. Dynamic hysteresis characteristic is investigated. The system identification using the extended Kalman filter determined the amplitude dependency of natural frequency and damping factor, which are consistent with damage feature. Occurrence of partial uplifting in the transverse direction is suggested by the induced higher harmonics based on the wavelet analysis. Historical change of the amplitude dependent dynamic characteristics is also discussed based on the long-term monitoring data from microtremor level to strong motion level.
文摘Exposure in water-damaged buildings (WDB) to airborne bioaerosols including metabolic products of toxigenic fungi, bacteria and actinomycetes;and inflammagens, can lead to a persistent innate immune inflammatory illness. This illness, termed a chronic inflammatory response syndrome (CIRS-WDB), is systemic with symptoms acquired from multiple organ systems. Treatment of CIRS-WDB has progressed rapidly as a better understanding of the inflammatory pathophysiology has led to targeted, sequential therapies. The fundamental basis of uncontrolled innate immune responses, the humoral deficiency of regulatory neuropeptides melanocyte stimulating hormone (MSH) or vasoactive intestinal polypeptide (VIP), seen in over 98% of pa tients, has not consistently responded to any treatment modality. Use of replacement VIP has been attempted anecdotally;VIP replacement therapies show promise in short term studies but longer therapies have not been attempted. Here we report an open label trial of 20 patients with refractory CIRS-WDB illness who took replacement VIP in a nasal spray for at least 18 months with confirmation of durable efficacy and absence of significant side effects. These 20 patients were similar in symptoms and lab find- ings to three previously published cohorts in- volving 1829 patients and 169 controls. Dosage of VIP was titrated downwards from four to zero doses a day to determine minimum effective dose, and retitrated upwards for maximum improvement over time. The trial showed that VIP therapy safely 1) reduced refractory symptoms to equal controls;2) corrected inflammatory parameters C4a, TGF beta-1, VEGF, MMP9;3) corrected estradiol, testosterone and 25-OH Vitamin D;4) returned pulmonary artery systolic pressure (PASP) during exercise to normal;and 5) enhanced quality of life in 100% of trial patients. Subsequent identification of correction of T-regulatory cell levels supports the potential role of VIP in both innate and adaptive immune function.
文摘A field damage survey of 1,005 buildings damaged by the Wenchuan Earthquake in Dujiangyan City was carried out and the resulting data was analyzed using the statistical method. It is shown that buildings that were seismically designed achieved the desired seismic fortification target; they sustained less damage than the non-seismically designed buildings. Among the seismically designed buildings investigated, RC frame buildings performed the best in terms of seismic resistance. Masonry buildings with a ground story of RC frame structure were the second best, and masonry buildings performed the worst. Considering building height, multistory buildings sustained more severe damage than high-rise buildings and 2- and 3-story buildings. Compared to residential buildings, public buildings, such as schools and hospitals, suffered more severe damage.
基金National Science&Technology Pillar Program No.2015BAK17B00Seismic Industry Research Special Fund under Grant No.201508026
文摘The extensive damage to buildings caused by the Nepal Ms8.1 earthquake has attracted much attention by the international community.Afterthe preliminary scientific investigations on the different affected areas inNepal,the construction and damage characteristics of five different types of buildings commonly existing in Nepal were discussed and the reasons of their disaster performance were analyzed.Types of buildings investigated include reinforced concrete(RC) frame structures,rubble structures,brick-wood structures,raw soil structures,and brick-wood structures of historic buildings.In addition,the weak links of the seismic design were pointed out,which was very important for the post-earthquake reconstruction and recovery,and gave a preliminary explanations for the damage experienced.
基金National Natural Science Foundation of China Under Grant No.50439010 NSFC and Korea Science and Engineering Foundation Under Grant No.50811140341
文摘A large number of buildings were seriously damaged or collapsed in the "5.12" Wenchuan earthquake. Based on field surveys and studies of damage to different types of buildings, seismic design codes have been updated. This paper briefly summarizes some of the major revisions that have been incorporated into the "Standard for classification of seismic protection of building constructions GB50223-2008" and "Code for Seismic Design of Buildings GB50011-2001." The definition of seismic fortification class for buildings has been revisited, and as a result, the seismic classifications for schools, hospitals and other buildings that hold large populations such as evacuation shelters and information centers have been upgraded in the GB50223-2008 Code. The main aspects of the revised GB50011-2001 code include: (a) modification of the seismic intensity specified for the Provinces of Sichuan, Shanxi and Gansu; (b) basic conceptual design for retaining walls and building foundations in mountainous areas; (c) regularity of building configuration; (d) integration of masonry structures and precast RC floors; (e) requirements for calculating and detailing stair shafts; and (f) limiting the use of single-bay RC frame structures. Some significant examples of damage in the epicenter areas are provided as a reference in the discussion on the consequences of collapse, the importance of duplicate structural systems, and the integration of RC and masonry structures.
基金supported by the Institute of Seismology,China Earthquake Administration ( IS200826056)
文摘The Ms8.0 Wenchuan earthquake in 2008 caused huge casualties, economic losses, and building damages , which are analyzed. The results show that damages of houses designed according to the current seismic code were significantly smaller than those without such design, suggesting that the code has achieved the desired goal of seismic fortification. Buildings of different kinds of structures showed large differences in damages : Houses with steel-frames and shear walls or steel structures suffered the least damages ; those with frames or with brick-and-concrete structures suffered more; old cottages, the most.
基金supported by the National Natural Science Foundation of China(Grant No.41404046)the World Bank GFDRR group for providing financial support to acquire the data
文摘Building collapse is a significant cause of earthquake-related casualties; therefore, the rapid assessment of buildings damage is important for emergency management and rescue. Airborne light detection and ranging (LiDAR) can acquire point cloud data in combination with height values, which in turn provides detailed information on building damage. However, the most previous approaches have used optical images and LiDAR data, or pre- and post-earthquake LiDAR data, to derive building damage information. This study applied surface normal algorithms to extract the degree of building damage. In this method, the angle between the surface normal and zenith (0) is used to identify damaged parts of a building, while the ratio of the standard deviation to the mean absolute deviation (σ/δ) of θ is used to obtain the degree of building damage. Quantitative analysis of 85 individual buildings with different roof types (i.e., flat top or pitched roofs) was conducted, and the results confirm that post-earthquake single LiDAR data are not affected by roof shape. Furthermore, the results confirm that θ is correlated to building damage, and that σ/δ represents an effective index to identify the degree of building damage.
基金Supported by:Scientific Research Projects Office of Van YüzüncüYil University Project Number 2015-MIM-B259
文摘The seismic vulnerability index(Kg) is a parameter that depends on the dynamic properties of soil. With this parameter, it is possible to evaluate the vulnerability of a point-based site under strong ground motion. Since it is related to the natural vibration period and amplification factor, the parameter can be calculated for both soil and structure. In this study, HVSR microtremor measurements are recorded at more than 200 points in the Van region to generate a seismic vulnerability index map. After generating the map, it is determined that the hazard potential and seismic vulnerability index is high at the sites close to Van Lake and at the densely populated city center. Damage information of the buildings investigated after the 2011 Van earthquakes(Mw = 7.1) are placed on the seismic vulnerability index map and it is realized that there may be a correlation between the damage and the seismic vulnerability index. There is a high correlation, approximately 80 percent, between the damage rate map based on the damaged building data and the K_g values. In addition, vulnerability indexes of buildings are calculated and the effect of local soil conditions and building properties on the damage levels are determined. From the results of this study and the site observations after the 2011 Van earthquakes, it is found that structural damage is not only structure-dependent but is also related to the dynamic behavior of soil layers and local soil conditions.
基金sponsored by the National Science & Technology Pillar Programme of the Ministry of Science and Technology of China (Grant No. 2014BAL05B01)National Natural Science Foundation of China (Grant No. 51708420)+3 种基金Shanghai Pujiang Program (Grant No. 17PJ1409100)Natural Science Foundation of Shanghai (Grant No. 17ZR1432300)the Fundamental Research Funds for the Central Universities (Grant No. 2016KJ024)the Shanghai Peak Discipline Program for Higher Education Institutions (Class I)-Civil Engineering
文摘In mountainous areas, geological disasters carrying large boulders can cause severe damage to the widely used masonry buildings due to the high impact forces. To better understand the damage of brick masonry buildings under the impact of boulders, a "block-joint" model is developed using threedimensional discontinuous deformation analysis(3-D DDA) to simulate the behaviour of the "brick-mortar" structure. The "block-joint" model is used to capture not only the large displacement and deformation of individual bricks but also the large-scale sliding and opening along the mortar between the bricks. The linear elastic constitutive model is applied to account for the non-plastic deformation behaviour of brick materials. Furthermore, the mechanical characteristics of the mortar are represented using the Mohr-Coulomb and Drucker-Prager criteria. To propose safe structural design schemes and effective reinforcement for brick masonry buildings, seven construction techniques are considered, includingdifferent grades of brick and mortar, effective shear areas and reinforced members. The proposed 3-D DDA model is used to analyse the velocity distribution and the key point displacements of the brick masonry building under the impact of boulders. The results show that upgrading the brick and mortar, increasing the wall thickness, making full use of the wall thickness, and adding a circular beam and structural column are very effective approaches for improving the impact resistance of brick masonry buildings.
文摘Coal mining under buildings certainly causes surface movement and deformation, therefore, it brings about deformation even fracture for buildings. It is an important task to evaluate correcly the buildings’ damage grabe caused by coal mining. Fuzzy comprehensive evaluation,considering some factors of buildings’ fracture, has been applied to analyze the masonry structure buildings’ damage grade affer coal mining in this paper. It provides a scientific basis for buildings’reidercement before mining and maintenance or compensation after mining.
文摘As in many parts of the world, long-term excessive extraction of groundwater has caused significant land-surface sub- sidence in the residential areas of Datun coal mining district in East China. The recorded maximum level of subsidence in the area since 1976 to 2006 is 863 mm, and the area with an accumulative subsidence more than 200 mm has reached 33.1 km2 by the end of 2006. Over ten cases of building crack due to ground subsidence have already been observed. Spatial variation in ground subsi- dence often leads to a corresponding pattern of ground deformation. Buildings and underground infrastructures have been under a higher risk of damage in locations with greater differential ground deformation. Governmental guideline in China classifies build- ing damages into four different levels, based on the observable measures such as the width of wall crack, the degree of door and window deformation, the degree of wall inclination and the degree of structural destruction. Building damage level (BDL) is esti- mated by means of ground deformation analysis in terms of variations in slope gradient and curvature. Ground deformation analysis in terms of variations in slope gradient has shown that the areas of BDL III and BDL II sites account for about 0.013 km2 and 0.284 km2 respectively in 2006, and the predicted areas of BDL (define this first) III and II sites will be about 0.029 km2 and 0.423 km2 respectively by 2010. The situation is getting worse as subsidence continues. That calls for effective strategies for subsidence miti- gation and damage reduction, in terms of sustainable groundwater extraction, enhanced monitoring and the establishment of early warning systems.
基金supported by Public Service Research Project of Quality Inspection Field under Grant No. 10-110 Public Service Research Project of Earthquake Field under Grant No. 200708005.
文摘The outline and typical characteristics of damages to building in Jiangyou city and Anxian county (intensity Ⅷ), Mianyang city and Deyang city (intensity Ⅶ) are introduced in the paper. The damage ratios, based on the sample statistics of multi-story brick buildings together with multi-story brick buildings with RC frame at first story (BBF), are presented. Then some typical damages, such as horizontal cricks of brick masonry buildings, X-shaped cricks on the walls under windows, the damages to columns, beams and infill walls of frame buildings and the damage to half circle-shaped masonry walls, are discussed.
基金sponsored by the Key Youth Emergency Task,China Earthquake Administration(CEA_EDEM_201620)
文摘Based on the field investigation of the building types and damage caused to them by the Hutubi M_S6.2 earthquake on December 8,2016,we analyzed the damage characteristics and causes for different types of buildings. In conclusion we put forward some suggestions for the restoration and reconstruction in the earthquake affected area in future.
文摘Seismic earthquakes are a real danger for the construction evolution of high rise buildings.The rate of earthquakes around the world is noteworthy in a wide range of construction areas.In this study,we present the dynamic behavior of a high-rise RC building with dynamic isolators(lead-rubber-bearing),in comparison with a traditional shear wall system of the same building.Seismic isolation has been introduced in building construction to increase the structural stability and to protect the non-structural components against the damaging effects of an earthquake.In order to clarify the influence of incorporating lead rubber bearing isolators in the seismic response and in reducing seismic damages;a comparative study is performed between a fixed base system(shear wall system)and an isolated base system(Lead Rubber Bearing)on an irregular high rise reinforced concrete(RC)building located in Beirut consisting of 48 storeys almost asymmetric orthogonally.For this purpose,a non-linear analysis of a real earthquake acceleration record(EI Centro seismic signal)is conducted,so that the mode shapes,the damping ratio and the natural frequencies of the two models are obtained using ETABS software.The results prove a substantial elongation of the building period,as well as a reduction in the building displacement,the roof acceleration,the inter-storey drift ratio and the base shear force of isolated building relative to fixed-base building.This study proves that this technology is applicable to high rise buildings with acceptable results.
基金sponsored by the National Key R&D Program(2017YFC150090501)Seismological Science and Technology Spark Program(XH20052)。
文摘In this paper,the tilt photography data acquisition and three-dimensional modeling of the Tashkurgan MS5.5 earthquake in Xinjiang are conducted using the tilt photography system of the Rotor UAV. The three-dimensional model is used to interpret the earthquake damage on buildings in the mega-earthquake area in order to acquire different-level house damage in the Kuzirun village disaster area. In addition,the characteristics of seismic damage on typical buildings are analyzed. The results show that the main collapsed houses in the mega-earthquake area are sand-stone buildings,of which about 39% are sand-stone buildings. Several brick-wood buildings and brick-concrete buildings are seriously damaged,while the buildings with frame structures are mainly slightly damaged,and the houses near the macro-epicenter of the earthquake are all in good conditions. Three-dimensional tilt photography technology can vividly display the scene of earthquake disaster,and can provide significant demonstration in building damage degree together with detailed analysis of disaster situation.
文摘The 2011 Tsunami event in the eastern coastal area of Japan caused a huge amount of damages or devastations on buildings. To this date, several field surveys have been conducted which provide detailed information about inundation areas and building damage characteristics in attacking east coastal areas by this tsunami. In this study, building damage data of Ishinomaki city, with special attention to the plain coast affected area, are classified and analyzed using data surveyed by the Ministry of Lands, Infrastructure and Transportation of Japan (MLIT) for more than 52,000 structures. The classification includes information on six levels of damage, four types of building materials and damages due to tsunami inundation for each building material which are necessary information for an effective hazard mitigation. Notably, damage level percentage distribution of different building materials is plotted for different inundation depth ranges in several sets of figures. This graphic illustration not only shows a better resistant performance of Reinforced Concrete (RC) and steel buildings over wood or other buildings for all inundation depth ranges, but also can explain clearly the inundation-induced damage behavior for each building material as well as the threshold depth for each damage level. Moreover, this research contains an analysis of vulnerable areas due to the coastal topography and the geographical factors. Surveyed data provided by Geospatial information authority of Japan (GSI) that classifies Ishinomaki plain coast area into three classes are compared with the damage map produced using an Analytical Hierarchy Process (AHP) methodology in ArcGIS 10.2 environment. The influence of key geographical features on tsunami-induced building damage, notably Kitakami river and water canals flooding, is taken into account with respect to the weighting of factors. A good agreement produced building damage map with surveyed GSI data shows the power of a GIS tool based on the AHP approach for tsunami damage assessment. The results of this study are useful to understand the damage behavior of buildings with different structural materials located in coastal areas vulnerable to the tsunami disaster.
文摘The feasibility analysis of projects for the preservation of the historical heritage buildings is an important problem concerning the evaluation of "the total cost of intervention", which includes all the future damage costs. The total cost of intervention represents a suitable measure of the expected deterioration risk and its evolution obviously depends on the damage process which buildings are subjected to. That damage phenomena affecting masonry buildings pleased into an aggressive environment are suitably modelled by renewal processes: this happens both in the case of catastrophic events, or in the case of the so-called "natural aging", in which damage comes off gradually in time. In the hypothesis ofa Markovian renewal process (Mrp) describing the damage process, the total cost of all the future damage is evaluated taking into account both the damage aspects: damages due to catastrophic aspects and damages due to aggressive environment, supposing different maintenance and/or rehabilitation scenarios. A semi-Markov process (s-Mp) is defined to model the damage rehabilitation history of buildings in presence of seismic events, natural ageing and rehabilitation strategies. The expected rewards connected to the process are defined; they represent a significant measure of the risk.
文摘In this article,we present a new data collection that combines information about earthquake damage with seismic shaking.Starting from the Da.D.O.database,which provides information on the damage of individual buildings subjected to sequences of past earthquakes in Italy,we have generated ShakeMaps for all the events with magnitude greater than 5.0 that have contributed to these sequences.The sequences under examination are those of Irpinia 1980,Umbria Marche 1997,Pollino 1998,Molise 2002,L’Aquila 2009 and Emilia 2012.In this way,we were able to combine,for a total of the 117,695 buildings,the engineering parameters included in Da.D.O.,but revised and reprocessed in this application,and the ground shaking data for six different variables(namely,intensity in MCS scale,PGA,PGV,SA at 0.3s,1.0s and 3.0s).The potential applications of this data collection are innumerable:from recalibrating fragility curves to training machine learning models to quantifying earthquake damage.This data collection will be made available within Da.D.O.,a platform of the Italian Department of Civil Protection,developed by EUCENTRE.