期刊文献+
共找到62篇文章
< 1 2 4 >
每页显示 20 50 100
Post-transcriptional mechanisms controlling neurogenesis and direct neuronal reprogramming 被引量:1
1
作者 Elsa Papadimitriou Dimitra Thomaidou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1929-1939,共11页
Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells ... Neurogenesis is a tightly regulated process in time and space both in the developing embryo and in adult neurogenic niches.A drastic change in the transcriptome and proteome of radial glial cells or neural stem cells towards the neuronal state is achieved due to sophisticated mechanisms of epigenetic,transcriptional,and post-transcriptional regulation.Understanding these neurogenic mechanisms is of major importance,not only for shedding light on very complex and crucial developmental processes,but also for the identification of putative reprogramming factors,that harbor hierarchically central regulatory roles in the course of neurogenesis and bare thus the capacity to drive direct reprogramming towards the neuronal fate.The major transcriptional programs that orchestrate the neurogenic process have been the focus of research for many years and key neurogenic transcription factors,as well as repressor complexes,have been identified and employed in direct reprogramming protocols to convert non-neuronal cells,into functional neurons.The post-transcriptional regulation of gene expression during nervous system development has emerged as another important and intricate regulatory layer,strongly contributing to the complexity of the mechanisms controlling neurogenesis and neuronal function.In particular,recent advances are highlighting the importance of specific RNA binding proteins that control major steps of mRNA life cycle during neurogenesis,such as alternative splicing,polyadenylation,stability,and translation.Apart from the RNA binding proteins,microRNAs,a class of small non-coding RNAs that block the translation of their target mRNAs,have also been shown to play crucial roles in all the stages of the neurogenic process,from neural stem/progenitor cell proliferation,neuronal differentiation and migration,to functional maturation.Here,we provide an overview of the most prominent post-transcriptional mechanisms mediated by RNA binding proteins and microRNAs during the neurogenic process,giving particular emphasis on the interplay of specific RNA binding proteins with neurogenic microRNAs.Taking under consideration that the molecular mechanisms of neurogenesis exert high similarity to the ones driving direct neuronal reprogramming,we also discuss the current advances in in vitro and in vivo direct neuronal reprogramming approaches that have employed microRNAs or RNA binding proteins as reprogramming factors,highlighting the so far known mechanisms of their reprogramming action. 展开更多
关键词 direct neuronal reprogramming in vivo glia-to-neuron conversion microRNAs NEUROGENESIS post-transcriptional regulation RNA binding proteins
下载PDF
Post-transcriptional regulation of vascular endothelial growth factor: Implications for tumor angiogenesis 被引量:11
2
作者 Peter S Yoo Abby L Mulkeen Charles H Cha 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第31期4937-4942,共6页
Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization, trans... Vascular endothelial growth factor (VEGF) is a potent secreted mitogen critical for physiologic and tumor angiogenesis. Regulation of VEGF occurs at several levels, including transcription, mRNA stabilization, translation, and differential cellular localization of various isoforms. Recent advances in our understanding of post-transcriptional regulation of VEGF include identification of the stabilizing mRNA binding protein, HuR, and the discovery of internal ribosomal entry sites in the 5'UTR of the VEGF mRNA. Monoclonal anti-VEGF antibody was recently approved for use in humans, but suffers from the need for high systemic doses. RNA interference (RNAi) technology is being used in vitro and in animal models with promising results. Here, we review the literature on post-transcriptional regulation of VEGF and describe recent progress in targeting these mechanisms for therapeutic benefit. 展开更多
关键词 Vascular endothelial growth factor Vascular endothelial growth hormone post-transcriptional regulation mRNA stability HUR ELAVl Internal ribosomal entry IRES siRNA RNAI BEVACIZUMAB
下载PDF
Prospects for inhibiting the post-transcriptional regulation of gene expression in hepatitis B virus 被引量:1
3
作者 Augustine Chen Nattanan Panjaworayan T-Thienprasert Chris M Brown 《World Journal of Gastroenterology》 SCIE CAS 2014年第25期7993-8004,共12页
There is a continuing need for novel antivirals to treat hepatitis B virus (HBV) infection, as it remains a major health problem worldwide. Ideally new classes of antivirals would target multiple steps in the viral li... There is a continuing need for novel antivirals to treat hepatitis B virus (HBV) infection, as it remains a major health problem worldwide. Ideally new classes of antivirals would target multiple steps in the viral lifecycle. In this review, we consider the steps in which HBV RNAs are processed, exported from the nucleus and translated. These are often overlooked steps in the HBV life-cycle. HBV, like retroviruses, incorporates a number of unusual steps in these processes, which use a combination of viral and host cellular machinery. Some of these unusual steps deserve a closer scrutiny. They may provide alternative targets to existing antiviral therapies, which are associated with increasing drug resistance. The RNA post-transcriptional regulatory element identified 20 years ago promotes nucleocytoplasmic export of all unspliced HBV RNAs. There is evidence that inhibition of this step is part of the antiviral action of interferon. Similarly, the structured RNA epsilon element situated at the 5&#x02019; end of the polycistronic HBV pregenomic RNA also performs key roles during HBV replication. The pregenomic RNA, which is the template for translation of both the viral core and polymerase proteins, is also encapsidated and used in replication. This complex process, regulated at the epsilon element, also presents an attractive antiviral target. These RNA elements that mediate and regulate gene expression are highly conserved and could be targeted using novel strategies employing RNAi, miRNAs or aptamers. Such approaches targeting these functionally constrained genomic regions should avoid escape mutations. Therefore understanding these regulatory elements, along with providing potential targets, may also facilitate the development of other new classes of antiviral drugs. 展开更多
关键词 Hepatitis B virus Translational control ANTIVIRAL Nuclear export post-transcriptional control Nucleocytoplasmic export
下载PDF
Post-transcriptional gene silencing, transcriptional gene silencing and human immunodeficiency virus
4
作者 Catalina Méndez Chantelle L Ahlenstiel Anthony D Kelleher 《World Journal of Virology》 2015年第3期219-244,共26页
While human immunodeficiency virus 1(HIV-1) infectionis controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from th... While human immunodeficiency virus 1(HIV-1) infectionis controlled through continuous, life-long use of a combination of drugs targeting different steps of the virus cycle, HIV-1 is never completely eradicated from the body. Despite decades of research there is still no effective vaccine to prevent HIV-1 infection. Therefore, the possibility of an RNA interference(RNAi)-based cure has become an increasingly explored approach. Endogenous gene expression is controlled at both, transcriptional and post-transcriptional levels by noncoding RNAs, which act through diverse molecular mechanisms including RNAi. RNAi has the potential to control the turning on/off of specific genes through transcriptional gene silencing(TGS), as well as finetuning their expression through post-transcriptional gene silencing(PTGS). In this review we will describe in detail the canonical RNAi pathways for PTGS and TGS, the relationship of TGS with other silencing mechanisms and will discuss a variety of approaches developed to suppress HIV-1 via manipulation of RNAi. We will briefly compare RNAi strategies against other approaches developed to target the virus, highlighting their potential to overcome the major obstacle to finding a cure, which is the specific targeting of the HIV-1 reservoir within latently infected cells. 展开更多
关键词 Human IMMUNODEFICIENCY virus 1 RNA interference Reservoirs EPIGENETICS Latency TRANSCRIPTIONAL GENE SILENCING post-transcriptional GENE SILENCING
下载PDF
Post-transcriptional regulation of DEAD-box RNA helicases in hematopoietic malignancies
5
作者 Jiankun Fan Zhigang Li +1 位作者 Li Pei Yu Hou 《Genes & Diseases》 SCIE CSCD 2024年第5期315-323,共9页
Hematopoiesis represents a meticulously regulated and dynamic biological process.Genetic aberrations affecting blood cells,induced by various factors,frequently give rise to hematological tumors.These instances are of... Hematopoiesis represents a meticulously regulated and dynamic biological process.Genetic aberrations affecting blood cells,induced by various factors,frequently give rise to hematological tumors.These instances are often accompanied by a multitude of abnormal post-transcriptional regulatory events,including RNA alternative splicing,RNA localization,RNA degradation,and storage.Notably,post-transcriptional regulation plays a pivotal role in preserving hematopoietic homeostasis.The DEAD-Box RNA helicase genes emerge as crucial post-transcriptional regulatory factors,intricately involved in sustaining normal hematopoiesis through diverse mechanisms such as RNA alternative splicing,RNA modification,and ribosome assembly.This review consolidates the existing knowledge on the role of DEAD-box RNA helicases in regulating normal hematopoiesis and underscores the pathogenicity of mutant DEADBox RNA helicases in malignant hematopoiesis.Emphasis is placed on elucidating both the positive and negative contributions of DEAD-box RNA helicases within the hematopoietic system. 展开更多
关键词 DEAD-box RNA helicase Hemopoietic system post-transcriptional regulation Ribosomes assembly RNA alternative splicing
原文传递
Post-transcriptional regulation of grain weight and shape by the RBP-A-J-K complex in rice
6
作者 Ding Ren Hui Liu +10 位作者 Xuejun Sun Fan Zhang Ling Jiang Ying Wang Ning Jiang Peiwen Yan Jinhao Cui Jinshui Yang Zhikang Li Pingli Lu Xiaojin Luo 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2024年第1期66-85,共20页
RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional ... RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional characterizations,and transcriptomic and population genomic analyses,we revealed that RBP-K(LOC_Os08g23120),RBP-A(LOC_Os11g41890),and RBP-J(LOC_Os10g33230)encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits.Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally.Additionally,RBP-J most likely affects GA pathways,resulting in considerable increases in grain and panicle lengths,but decreases in grain width and thickness.In contrast,RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport,with substantial effects on the rice grain filling process as well as grain length and weight.Evolutionarily,RBP-K is relatively ancient and highly conserved,whereas RBP-J and RBP-A are more diverse.Thus,the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency,efficiency,and versatility,as well as increased evolutionary potential.Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits.Furthermore,rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection. 展开更多
关键词 GL11 grain weight and shape post-transcriptional regulation RNA-binding proteins
原文传递
Post-transcriptional regulation of erythropoiesis 被引量:1
7
作者 Yanan Li Haihang Zhang +3 位作者 Bin Hu Pan Wang Wei Wang Jing Liu 《Blood Science》 2023年第3期150-159,共10页
Erythropoiesis is a complex,precise,and lifelong process that is essential for maintaining normal body functions.Its strict regulation is necessary to prevent a variety of blood diseases.Normal erythropoiesis is preci... Erythropoiesis is a complex,precise,and lifelong process that is essential for maintaining normal body functions.Its strict regulation is necessary to prevent a variety of blood diseases.Normal erythropoiesis is precisely regulated by an intricate network that involves transcription levels,signal transduction,and various epigenetic modifications.In recent years,research on posttranscriptional levels in erythropoiesis has expanded significantly.The dynamic regulation of splicing transitions is responsible for changes in protein isoform expression that add new functions beneficial for erythropoiesis.RNA-binding proteins adapt the translation of transcripts to the protein requirements of the cell,yielding mRNA with dynamic translation efficiency.Noncoding RNAs,such as microRNAs and lncRNAs,are indispensable for changing the translational efficiency and/or stability of targeted mRNAs to maintain the normal expression of genes related to erythropoiesis.N6-methyladenosine-dependent regulation of mRNA translation plays an important role in maintaining the expression programs of erythroid-related genes and promoting erythroid lineage determination.This review aims to describe our current understanding of the role of post-transcriptional regulation in erythropoiesis and erythroid-associated diseases,and to shed light on the physiological and pathological implications of the post-transcriptional regulation machinery in erythropoiesis.These may help to further enrich our understanding of the regulatory network of erythropoiesis and provide new strategies for the diagnosis and treatment of erythroid-related diseases. 展开更多
关键词 ERYTHROPOIESIS mRNA stability Noncoding RNA post-transcriptional regulation
原文传递
Preliminary identification and analysis of point mutations corre lated with response to interferon-α in hepatitis B virus post-transcriptional regulatory elements 被引量:5
8
作者 XINGTong-jing LUOKang-xian HOUJin-lin 《Chinese Medical Journal》 SCIE CAS CSCD 2005年第1期56-61,共6页
Background It is still unclear whether viral genetic variability influences response to interferon(IFN) α treatment Recent reports suggest that IFN α effects may be associated with hepatitis B virus(HBV) post ... Background It is still unclear whether viral genetic variability influences response to interferon(IFN) α treatment Recent reports suggest that IFN α effects may be associated with hepatitis B virus(HBV) post transcriptional regulation This study was designed to explore the heterogeneity of HBV post transcriptional regulatory elements (HPRE) and the relationship between the diversity of HPRE and the response to IFN α treatment Methods The HPRE sequences from 31 Chinese patients infected with HBV were determined by directly sequencing of polymerase chain reaction (PCR) product, and comparing them to those from Caucasian patients Subsequently, eukaryotic expression vectors containing HPRE at various points were constructed and transfected into HepG2 cells, which were then exposed to recombinant human cytokines Results The T to C point mutation at nt 1504 and the C to T (G) at nt 1508 in HPRE were found in 21 and 19 patients with chronic hepatitis B, respectively; the C to T point mutation at nt 1509 was found in 17 patients These point mutations did not exist in the HPRE of the Caucasian patients The activity of the CAT gene obviously increased in the case of T to C point mutation at nt 1504, but did not change in the case of the C to T (G) mutations at nt 1508 and 1509 The activity of the CAT gene at these point mutations of HPRE could be inhibited by IFN α/γ and tumor necrosis factor (TNF) α except for the point mutations at nt 1508 of HPRE which may escape the suppression role of IFN α on HPRE Conclusions There are point mutations between the HPRE of Chinese and Caucasian HBV patients, which might be correlated with response to IFN α The variation of HPRE might affect the function of HPRE and influence the regulative function of IFN α other than that of IFN γ or TNF α on HPRE 展开更多
关键词 hepatitis B virus post-transcriptional regulatory elements point mutations CYTOKINE
原文传递
Post-transcriptional gene silencing in plants: a double-edged sword 被引量:4
9
作者 Xinyan Zhang Ying Zhu +1 位作者 Huihui Wu Hongwei Guo 《Science China(Life Sciences)》 SCIE CAS CSCD 2016年第3期271-276,共6页
In plants, post-transcriptional gene silencing(PTGS) protects the genome from foreign genes and restricts the expression of certain endogenous genes for proper development. Here, we review the recent progress about ho... In plants, post-transcriptional gene silencing(PTGS) protects the genome from foreign genes and restricts the expression of certain endogenous genes for proper development. Here, we review the recent progress about how the unwanted PTGS is avoided in plants. As a decision-making step of PTGS, aberrant transcripts from most endogenous coding genes are strictly sorted to the bidirectional RNA decay pathways in cytoplasm but not to the short interference RNA(si RNA)-mediated PTGS, with the exception of a few development-relevant endogenous si RNA-producing genes. We also discuss a finely balanced PTGS threshold model that plants fully take advantage of the power of PTGS without self-harm. 展开更多
关键词 post-transcriptional gene silencing short interference RNA coding-transcript-derived siRNA RNA decay
原文传递
Transcriptional and Post-transcriptional Modulation of SQU and KEW Activities in the Control of Dorsal-Ventral Asymmetric Flower Development in Lotus japonicus 被引量:1
10
作者 Zhiyong xu Kai Cheng +10 位作者 Xin Li Jun Yang Shilei Xu Xiangling Cao Xiaohe Hu Wei Xie Ling Yuan Mike Ambrose Genyun Chen Hualing Mi Da Luo 《Molecular Plant》 SCIE CAS CSCD 2016年第5期722-736,共15页
In Papilionoideae legume, Lotusjaponicus, the development of dorsal-ventral (DV) asymmetric flowers is mainly controlled by two TB1/CYCLOIDEA/PCF (TCP) genes, SQUARED STANDARD (SQU) and KEELED WINGS IN LOTUS (... In Papilionoideae legume, Lotusjaponicus, the development of dorsal-ventral (DV) asymmetric flowers is mainly controlled by two TB1/CYCLOIDEA/PCF (TCP) genes, SQUARED STANDARD (SQU) and KEELED WINGS IN LOTUS (KEW), which determine dorsal and lateral identities, respectively. However, the molecular basis of how these two highly homologous genes orchestrate their diverse functions remains unclear. Here, we analyzed their expression levels, and investigated the transcriptional activities of SQUand KEW. We demonstrated that SQU possesses both activation and repression activities, while KEW acts only as an activator. They form homo- and heterodimers, and then collaboraUvely regulate their expression at the transcription level. Furthermore, we identified two types of post-transcriptional modifications, phosphor- ylation and ATP/GTP binding, both of which could affect their transcriptional activities. Mutations in ATP/ GTP binding motifs of SQU and KEW lead to failure of phosphorylation, and transgenic plants bearing the mutant proteins display defective DV asymmetric flower development, indicating that the two conjugate modifications are essential for their diverse functions. Altogether, SQU and KEW activities are precisely modulated at both transcription and post-transcription levels, which might link DV asymmetric flower development to different physiological status and/or signaling pathways. 展开更多
关键词 DV asymmetric flower development Lotus japonicus SQU KEW transcriptional activity post-transcriptional modification
原文传递
Post-transcriptional gene regulation by RNA-binding proteins in vascular endothelial dysfunction
11
作者 XIN HongBo DENG KeYu FU MinGui 《Science China(Life Sciences)》 SCIE CAS 2014年第8期836-844,共9页
Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions,including impairment of the barrier functions,control of vascular tone,disturbance of proliferative and migra... Endothelial cell dysfunction is a term which implies the dysregulation of normal endothelial cell functions,including impairment of the barrier functions,control of vascular tone,disturbance of proliferative and migratory capacity of endothelial cells,as well as control of leukocyte trafficking.Endothelial dysfunction is an early step in vascular inflammatory diseases such as atherosclerosis,diabetic vascular complications,sepsis-induced or severe virus infection-induced organ injuries.The expressions of inflammatory cytokines and vascular adhesion molecules induced by various stimuli,such as modified lipids,smoking,advanced glycation end products and bacteria toxin,significantly contribute to the development of endothelial dysfunction.The transcriptional regulation of inflammatory cytokines and vascular adhesion molecules has been well-studied.However,the regulation of those gene expressions at post-transcriptional level is emerging.RNA-binding proteins have emerged as critical regulators of gene expression acting predominantly at the post-transcriptional level in microRNA-dependent or independent manners.This review summarizes the latest insights into the roles of RNA-binding proteins in controlling vascular endothelial cell functions and their contribution to the pathogenesis of vascular inflammatory diseases. 展开更多
关键词 endothelial dysfunction vascular inflammation RNA-binding proteins MICRORNAS post-transcriptional gene regulation
原文传递
Post-transcriptional regulation of miRNA biogenesis and functions
12
作者 Jinbiao MA Ying HUANG 《Frontiers in Biology》 CSCD 2010年第1期32-40,共9页
MicroRNAs(miRNAs)are a highly conserved class of small(18–24 nucleotides)non-coding RNAs that regulate a broad spectrum of biological processes.Aberrations or corruptions of miRNA functions may lead to deregulated ce... MicroRNAs(miRNAs)are a highly conserved class of small(18–24 nucleotides)non-coding RNAs that regulate a broad spectrum of biological processes.Aberrations or corruptions of miRNA functions may lead to deregulated cell proliferation,tumorigenesis,and ultimately,cancer.Increasing evidences suggested that a large fraction of miRNAs is regulated at the posttranscriptional stage,which impacts on the level and function of miRNAs during cell development and human diseases.Recently,several distinct mechanisms are emerging to regulate the biogenesis,stability and function of miRNAs at post-transcriptional level,such as specific binding to terminal loops of miRNA precursors(primiRNAs or pre-miRNAs)by RNA-binding proteins and 3’-terminal modifications by particular enzymes.Signaling cascades and post-translational modifications of the core components of RNA machinery also take part in the posttranscriptional regulation of miRNAs. 展开更多
关键词 miRNA biogenesis post-transcriptional regulation RNA-binding proteins hua enhancer 1(HEN1) non-canonical poly(A)polymerase signal transduction post-translational modification
原文传递
Nanosize aminated fullerene for autophagic flux activation and G0/G1 phase arrest in cancer cells via post-transcriptional regulation
13
作者 Xiaoyan Zhang Wei Zhou +9 位作者 Yang Liu Linyu Jin Jiawei Huo Yang Yang Shumu Li Haijun Ma Jiao Li Mingming Zhen Jie Li Chunru Wang 《Nano Research》 SCIE EI CSCD 2022年第4期3346-3355,共10页
Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transfor... Functional fullerene derivatives exhibit special inhibitory effects on tumor progress and metastasis via diverse tumor microenvironment regulations,while the elusive molecular mechanisms hinder their clinical transformation.Herein,it is initially revealed that nanosize aminated fullerene(C_(70)-EDA)can activate autophagic flux,induce G0/G1 cell cycle arrest to abrogate cancer cell proliferation,and significantly inhibit tumor growth in vivo.Mechanismly,C_(70)-EDA promotes the expression of cathepsin D involved in autophagic activation via post-transcriptional regulation,attributing to the interaction with a panel of RNA binding proteins.The accumulation of cathepsin D induces the autophagic degradation of cyclin D1,which arouses G0/G1 phase arrest.This work unveils the fantastic anti-tumor activity of aminated fullerene,elucidates the molecular mechanism,and provides a new strategy for the antineoplastic drug development on functional fullerenes. 展开更多
关键词 aminated fullerene autophagic flux G0/G1 phase arrest post-transcription regulation
原文传递
Species-specific regulatory pathways of small RNAs play sophisticated roles in flower development in Dimocarpus longan Lour. 被引量:2
14
作者 Bo Liu Guanliang Li +5 位作者 Chengjie Chen Zaohai Zeng Jing Xu Jisen Zhang Rui Xia Yuanlong Liu 《Horticultural Plant Journal》 SCIE CAS CSCD 2023年第2期237-249,共13页
Flower development plays vital role in horticultural plants.Post-transcriptional regulation via small RNAs is important for plant flower development.To uncover post-transcriptional regulatory networks during the flowe... Flower development plays vital role in horticultural plants.Post-transcriptional regulation via small RNAs is important for plant flower development.To uncover post-transcriptional regulatory networks during the flower development in Dimocarpus longan Lour.‘Shixia’,an economically important fruit crop in subtropical regions,we collected and analyzed sRNA deep-sequencing datasets and degradome libraries Apart from identifying miRNAs and phased siRNA generating loci(PHAS loci),120 hairpin loci,producing abundant sRNAs,were identified by in-house protocols.Our results suggested that 56 miRNA-target pairs,2221-nt-PHAS loci,and 111 hairpin loci are involved in posttranscriptional gene silencing during longan reproductive development.Lineage-specific or species-specific post-transcriptional regulatory modules have been unveiled,including miR482-PHAS and miRN15.miR482-PHAS might be involved in longan flower development beyond their conserved roles in plant defense,and miRN15 is a novel miRNA likely associated with a hairpin locus(HPL-056)to regulate strigolactone receptor gene DWARF14(D14)and the biogenesis of phasiRNAs from D14.These small RNAs are enriched in flower buds,suggesting they are likely involved in post-transcriptional regulatory networks essential for longan flower development via the strigolactone signaling pathway. 展开更多
关键词 Dimocarpus longan Lour Small RNAs Flower development post-transcriptional regulation
下载PDF
MicroRNA-21 targets tumor suppressor genes in invasion and metastasis 被引量:209
15
作者 Shuomin Zhu Hailong Wu +3 位作者 Fangting Wu Daotai Nie Shijie Sheng Yin-Yuan Mo 《Cell Research》 SCIE CAS CSCD 2008年第3期350-359,共10页
MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level. Our previous studies suggest that mir-21 functions as an oncogene and h... MicroRNAs (miRNAs) are a class of naturally occurring small non-coding RNAs that target protein-coding mRNAs at the post-transcriptional level. Our previous studies suggest that mir-21 functions as an oncogene and has a role in tumorigenesis, in part through regulation of the tumor suppressor gene tropomyosin 1 (TPM1). Given that TPM1 has been implicated in cell migration, in this study we further investigated the role of mir-21 in cell invasion and tumor metastasis. We found that suppression of mir-21 in metastatic breast cancer MDA-MB-231 cells significantly reduced invasion and lung metastasis. Consistent with this, ectopic expression of TPM1 remarkably reduced cell invasion. Furthermore, we identified two additional direct mir-21 targets, programmed cell death 4 (PDCD4) and maspin, both of which have been implicated in invasion and metastasis. Like TPM1, PDCD4 and maspin also reduced invasiveness of MDA-MB-231 cells. Finally, the expression of PDCD4 and maspin inversely correlated with mir-21 expression in human breast tumor specimens, indicating the potential regulation of PDCD4 and maspin by mir-21 in these tumors. Taken together, the results suggest that, as an oncogenic miRNA, mir-21 has a role not only in tumor growth but also in invasion and tumor metastasis by targeting multiple tumor/metastasis suppressor genes. Therefore, suppression of mir-21 may provide a novel approach for the treatment of advanced cancers. 展开更多
关键词 cell invasion miRNA MIR-21 post-transcriptional regulation MDA-MB-231 TUMORIGENESIS metastasis genesilencing PDCD4 MASPIN
下载PDF
Suppression of cell growth and invasion by miR-205 in breast cancer 被引量:56
16
作者 Hailong Wu Shoumin Zhu Yin-Yuan Mo 《Cell Research》 SCIE CAS CSCD 2009年第4期439-448,共10页
MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in b... MicroRNAs (miRNAs) are endogenous, small, non-coding RNAs, which are capable of silencing gene expression at the post-transcriptional level. In this study, we report that miR-205 is significantly underexpressed in breast tumor compared to the matched normal breast tissue. Similarly, breast cancer cell lines, including MCF-7 and MDA-MB- 231, express a lower level miR-205 than the non-malignant MCF-10A cells. Of interest, ectopic expression of miR-205 significantly inhibits cell proliferation and anchorage independent growth, as well as cell invasion. Furthermore, miR- 205 was shown to suppress lung metastasis in an animal model. Finally, western blot combined with the luciferase reporter assays demonstrate that ErbB3 and vascular endothelial growth factor A (VEGF-A) are direct targets for miR-205, and this miR-205-mediated suppression is likely through the direct interaction with the putative miR-205 binding site in the 3'-untranslated region (3'-UTR) of ErbB3 and VEGF-A. Together, these results suggest that miR- 205 is a tumor suppressor in breast cancer. 展开更多
关键词 breast cancer cell growth ERBB3 MIRNA miR-205 post-transcriptional regulation VEGF-A
下载PDF
Evolution of plant microRNA gene families 被引量:14
17
作者 Aili Li Long Mao 《Cell Research》 SCIE CAS CSCD 2007年第3期212-218,共7页
MicroRNAs (miRNAs) are important post-transcriptional regulators of their target genes in plants and animals, miRNAs are usually 20-24 nucleotides long. Despite their unusually small sizes, the evolutionary history ... MicroRNAs (miRNAs) are important post-transcriptional regulators of their target genes in plants and animals, miRNAs are usually 20-24 nucleotides long. Despite their unusually small sizes, the evolutionary history of miRNA gene families seems to be similar to their protein-codingcounterparts. In contrast to the small but abundant miRNA families in the animal genomes, plants have fewer but larger miRNA gene families. Members of plant miRNA gene families are often highly similar, suggesting recent expansion via tandem gene duplication and segmental duplication events. Although many miRNA genes are conserved across plant species, the same gene family varies significantly in size and genomic organization in different species, which may cause dosage effects and spatial and temporal differences in target gene regulations. In this review, we summarize the current progress in understanding the evolution of plant miRNA gene families. 展开更多
关键词 MICRORNAS post-transcriptional regulation tandem duplication segmental duplication
下载PDF
AU-rich element-binding proteins in colorectal cancer 被引量:9
18
作者 Noémie Legrand Dan A Dixon Cyril Sobolewski 《World Journal of Gastrointestinal Oncology》 SCIE CAS 2019年第2期71-90,共20页
Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a gr... Trans-acting factors controlling mRNA fate are critical for the post-transcriptional regulation of inflammation-related genes, as well as for oncogene and tumor suppressor expression in human cancers. Among them, a group of RNA-binding proteins called "Adenylate-Uridylate-rich elements binding proteins"(AUBPs)control mRNA stability or translation through their binding to AU-rich elements enriched in the 3'UTRs of inflammation-and cancer-associated mRNA transcripts. AUBPs play a central role in the recruitment of target mRNAs into small cytoplasmic foci called Processing-bodies and stress granules(also known as P-body/SG). Alterations in the expression and activities of AUBPs and Pbody/SG assembly have been observed to occur with colorectal cancer(CRC)progression, indicating the significant role AUBP-dependent post-transcriptional regulation plays in controlling gene expression during CRC tumorigenesis.Accordingly, these alterations contribute to the pathological expression of many early-response genes involved in prostaglandin biosynthesis and inflammation,along with key oncogenic pathways. In this review, we summarize the current role of these proteins in CRC development. CRC remains a major cause of cancer mortality worldwide and, therefore, targeting these AUBPs to restore efficient post-transcriptional regulation of gene expression may represent an appealing therapeutic strategy. 展开更多
关键词 COLORECTAL cancer Adenylate-Uridylate-rich element-binding proteins ONCOGENES Tumor SUPPRESSORS post-transcriptional regulation
下载PDF
Neurofilament proteins in axonal regeneration and neurodegenerative diseases 被引量:8
19
作者 Haitao Wang Minfei Wu +4 位作者 Chuanjun Zhan Enyuan Ma Maoguang Yang Xiaoyu Yang Yingpu Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第8期620-626,共7页
Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and th... Neurofilament protein is a component of the mature neuronal cytoskeleton, and it interacts with the zygosome, which is mediated by neurofilament-related proteins. Neurofilament protein regulates enzyme function and the structure of linker proteins. In addition, neurofilament gene expression plays an important role in nervous system development. Previous studies have shown that neurofilament gene transcriptional regulation is crucial for neurofilament protein expression, especially in axonal regeneration and degenerative diseases. Post-transcriptional regulation increased neurofilament protein gene transcription during axonal regeneration, ultimately resulting in a pattern of neurofilament protein expression. An expression imbalance of post-transcriptional regulatory proteins and other disorders could lead to amyotrophic lateral sclerosis or other neurodegenerative diseases. These findings indicated that after transcription, neurofilament protein regulated expression of related proteins and promoted regeneration of damaged axons, suggesting that regulation disorders could lead to neurodegenerative diseases. 展开更多
关键词 axonal regeneration nerve injury neurodegenerative diseases neurofilament protein post-transcriptional regulation REVIEWS
下载PDF
Stress granules in colorectal cancer:Current knowledge and potential therapeutic applications 被引量:5
20
作者 Noémie Legrand Dan A Dixon Cyril Sobolewski 《World Journal of Gastroenterology》 SCIE CAS 2020年第35期5223-5247,共25页
Stress granules(SGs)represent important non-membrane cytoplasmic compartments,involved in cellular adaptation to various stressful conditions(e.g.,hypoxia,nutrient deprivation,oxidative stress).These granules contain ... Stress granules(SGs)represent important non-membrane cytoplasmic compartments,involved in cellular adaptation to various stressful conditions(e.g.,hypoxia,nutrient deprivation,oxidative stress).These granules contain several scaffold proteins and RNA-binding proteins,which bind to mRNAs and keep them translationally silent while protecting them from harmful conditions.Although the role of SGs in cancer development is still poorly known and vary between cancer types,increasing evidence indicate that the expression and/or the activity of several key SGs components are deregulated in colorectal tumors but also in pre-neoplastic conditions(e.g.,inflammatory bowel disease),thus suggesting a potential role in the onset of colorectal cancer(CRC).It is therefore believed that SGs formation importantly contributes to various steps of colorectal tumorigenesis but also in chemoresistance.As CRC is the third most frequent cancer and one of the leading causes of cancer mortality worldwide,development of new therapeutic targets is needed to offset the development of chemoresistance and formation of metastasis.Abolishing SGs assembly may therefore represent an appealing therapeutic strategy to re-sensitize colon cancer cells to anti-cancer chemotherapies.In this review,we summarize the current knowledge on SGs in colorectal cancer and the potential therapeutic strategies that could be employed to target them. 展开更多
关键词 Stress-Granules Colorectal cancer Adenylate-Uridylate-rich element-binding proteins post-transcriptional regulation ONCOGENES Tumor suppressors
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部