In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are prove...In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.展开更多
The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite ...The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.展开更多
In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existenc...In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.展开更多
In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem...In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.展开更多
This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that ...This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.展开更多
In this paper, the superconvergence results are derived for a class of boundary control problems governed by Stokes equations. We derive superconvergence results for both the control and the state approximation. Base ...In this paper, the superconvergence results are derived for a class of boundary control problems governed by Stokes equations. We derive superconvergence results for both the control and the state approximation. Base on superconvergence results, we obtain asymptotically exact a posteriori error estimates.展开更多
In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then...In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then based on the discretization scheme,reliable a posteriori error estimates for the spectral approximation are derived.Some numerical examples are presented to verify the validity and applicability of the derived a posteriori error estimator.展开更多
This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time ...This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time discretization is based on the backward Euler method.The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions.We derive the superconvergence properties of finite element solutions.By using the superconvergence results,we obtain recovery type a posteriori error estimates.Some numerical examples are presented to verify the theoretical results.展开更多
This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems.Based on elliptic reconstruction approach introduced earlier by Makrid...This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems.Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto[25],a residual based a posteriori error estimators for the state,co-state and control variables are derived.The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements,whereas the piecewise constant functions are employed for the control variable.The temporal discretization is based on the backward Euler method.We derive a posteriori error estimates for the state,co-state and control variables in the L^(∞)(0,T;L^(2)(Ω))-norm.Finally,a numerical experiment is performed to illustrate the performance of the derived estimators.展开更多
In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by ...In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions.We derive a posteriori error estimates for both the state and the control approximation.Such estimates,which are apparently not available in the literature,are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.展开更多
In this paper,we discuss the conforming finite element method for a modified interior transmission eigenvalues problem.We present a complete theoretical analysis for the method,including the a priori and a posteriori ...In this paper,we discuss the conforming finite element method for a modified interior transmission eigenvalues problem.We present a complete theoretical analysis for the method,including the a priori and a posteriori error estimates.The theoretical analysis is conducted under the assumption of low regularity on the solution.We prove the reliability and efficiency of the a posteriori error estimators for eigenfunctions up to higher order terms,and we also analyze the reliability of estimators for eigenvalues.Finally,we report numerical experiments to show that our posteriori error estimator is effective and the approximations can reach the optimal convergence order.The numerical results also indicate that the conforming finite element eigenvalues approximate the exact ones from below,and there exists a monotonic relationship between the conforming finite element eigenvalues and the refractive index through numerical experiments.展开更多
In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the orde...In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the order k≤1 RaviartThomas mixed finite element spaces and the control is approximated by piecewise constant element.We derive a posteriori error estimates for the coupled state and control approximations.A numerical example is presented in confirmation of the theory.展开更多
Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which ...Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p seminorm.The other one is proved to give a global upper bound of the error in Lp-norm.By taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders.展开更多
We construct and analyze conservative local discontinuous Galerkin(LDG)methods for the Generalized Korteweg-de-Vries equation.LDG methods are designed by writing the equation as a system and performing separate approx...We construct and analyze conservative local discontinuous Galerkin(LDG)methods for the Generalized Korteweg-de-Vries equation.LDG methods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives.The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuous solution,and a posteriori error estimates for a fully discrete approximation that is based on the idea of dispersive reconstruction.Numerical experiments are provided to verify the theoretical estimates.展开更多
In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in ...In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in our analysis is the recent optimal superconver- gence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L2-norm to (p + 1)-degree right and left Radau interpolating polynomials under mesh re- finement. The order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are used. These results are used to show that the leading error terms on each element for the solution and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. We further prove that, for smooth solutions, the a posteriori LDG error estimates, which were constructed by the author in an earlier paper, converge, at a fixed time, to the true spatial errors in the L2-norm at (.9(hp+2) rate. Finally, we prove that the global effectivity indices in the L2-norm converge to unity at (9(h) rate. These results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using PP polynomials with p ≥ 1. Several numerical experiments are performed to validate the theoretical results.展开更多
In this paper, we study a weakly over-penalized interior penalty method for non-self- adjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a resi...In this paper, we study a weakly over-penalized interior penalty method for non-self- adjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a residual-based a posteriori error estimator, which is proved to be both reliable and efficient in the energy norm. Some numerical testes are presented to validate our theoretical analysis.展开更多
Adaptive methods have been rapidly developed and applied in many fields of scientific and engi- neering computing. Reliable and efficient a posteriori error estimates play key roles for both adaptive finite element ...Adaptive methods have been rapidly developed and applied in many fields of scientific and engi- neering computing. Reliable and efficient a posteriori error estimates play key roles for both adaptive finite element and boundary element methods. The aim of this paper is to develop a posteriori error estimates for boundary element methods. The standard a posteriori error estimates for boundary element methods are obtained from the classical boundary integral equations. This paper presents hyper-singular a posteriori er- ror estimates based on the hyper-singular integral equations. Three kinds of residuals are used as the esti- mates for boundary element errors. The theoretical analysis and numerical examples show that the hyper- singular residuals are good a posteriori error indicators in many adaptive boundary element computations.展开更多
A posteriori error estimators for the symmetric mixed finite element methods for linear elasticity problems with Dirichlet and mixed boundary conditions are proposed. Reliability and efficiency of the estimators are p...A posteriori error estimators for the symmetric mixed finite element methods for linear elasticity problems with Dirichlet and mixed boundary conditions are proposed. Reliability and efficiency of the estimators are proved. Numerical examples are presented to verify the theoretical results.展开更多
In this paper,we derive a residual based a posteriori error estimator for a modified weak Galerkin formulation of second order elliptic problems.We prove that the error estimator used for interior penalty discontinuou...In this paper,we derive a residual based a posteriori error estimator for a modified weak Galerkin formulation of second order elliptic problems.We prove that the error estimator used for interior penalty discontinuous Galerkin methods still gives both upper and lower bounds for the modified weak Galerkin method,though they have essentially different bilinear forms.More precisely,we prove its reliability and efficiency for the actual error measured in the standard DG norm.We further provide an improved a priori error estimate under minimal regularity assumptions on the exact solution.Numerical results are presented to verify the theoretical analysis.展开更多
In this paper,we derive a posteriori error estimates for finite element approximations of the optimal control problems governed by the Stokes-Darcy system.We obtain a posteriori error estimators for both the state and...In this paper,we derive a posteriori error estimates for finite element approximations of the optimal control problems governed by the Stokes-Darcy system.We obtain a posteriori error estimators for both the state and the control based on the residual of the finite element approximation.It is proved that the a posteriori error estimate provided in this paper is both reliable and efficient.展开更多
文摘In this paper, a posteriori error estimates for the generalized Schwartz method with Dirichlet boundary conditions on the interfaces for advection-diffusion equation with second order boundary value problems are proved by using the Euler time scheme combined with Galerkin spatial method. Furthermore, an asymptotic behavior in Sobolev norm is de- duced using Benssoussau-Lions' algorithm. Finally, the results of some numerical experiments are presented to support the theory.
基金This work was supported in part by the National Science Foundation under grant DMS-1620288。
文摘The present study regards the numerical approximation of solutions of systems of Korteweg-de Vries type,coupled through their nonlinear terms.In our previous work[9],we constructed conservative and dissipative finite element methods for these systems and presented a priori error estimates for the semidiscrete schemes.In this sequel,we present a posteriori error estimates for the semidiscrete and fully discrete approximations introduced in[9].The key tool employed to effect our analysis is the dispersive reconstruction devel-oped by Karakashian and Makridakis[20]for related discontinuous Galerkin methods.We conclude by providing a set of numerical experiments designed to validate the a posteriori theory and explore the effectivity of the resulting error indicators.
基金supported by the National Basic Research Program under the Grant 2005CB321701the National Natural Science Foundation of China under the Grants 60474027 and 10771211.
文摘In this paper,we investigate a streamline diffusion finite element approxi- mation scheme for the constrained optimal control problem governed by linear con- vection dominated diffusion equations.We prove the existence and uniqueness of the discretized scheme.Then a priori and a posteriori error estimates are derived for the state,the co-state and the control.Three numerical examples are presented to illustrate our theoretical results.
基金the National Basic Research Programthe National Natural Science Foundation of China(Grant No.2005CB321703)+2 种基金Scientific Research Fund of Hunan Provincial Education Departmentthe Outstanding Youth Scientist of the National Natural Science Foundation of China(Grant No.10625106)the National Basic Research Program of China(Grant No.2005CB321701)
文摘In this paper,we investigate the Legendre Galerkin spectral approximation of quadratic optimal control problems governed by parabolic equations.A spectral approximation scheme for the parabolic optimal control problem is presented.We obtain a posteriori error estimates of the approximated solutions for both the state and the control.
基金the NSF grants DMS-0410266 and DMS-0710831the China National Basic Research Program under the grant 2005CB321701+1 种基金the Program for the New Century Outstanding Talents in Universities of Chinathe Natural Science Foundation of Jiangsu Province under the grant BK2006511
文摘This paper develops a posteriori error estimates of residual type for conforming and mixed finite element approximations of the fourth order Cahn-Hilliard equation ut + △(ε△Au-ε^-1f(u)) = 0. It is shown that the a posteriori error bounds depends on ε^-1 only in some low polynomial order, instead of exponential order. Using these a posteriori error estimates, we construct at2 adaptive algorithm for computing the solution of the Cahn- Hilliard equation and its sharp interface limit, the Hele-Shaw flow. Numerical experiments are presented to show the robustness and effectiveness of the new error estimators and the proposed adaptive algorithm.
基金The research was supported by the Special Funds for Major State Basic Research Projects (No. G2000067102), National Natural Science Foundation of China (No. 60474027).
文摘In this paper, the superconvergence results are derived for a class of boundary control problems governed by Stokes equations. We derive superconvergence results for both the control and the state approximation. Base on superconvergence results, we obtain asymptotically exact a posteriori error estimates.
基金supported by the State Key Program of National Natural Science Foundation of China(No.11931003)National Natural Science Foundation of China(Nos.41974133,11671157 and 11971410)supported by the Innovation Project of Graduate School of South China Normal University(No.2018LKXM008).
文摘In this paper,an initial boundary value problem of the space-time fractional diffusion equation is studied.Both temporal and spatial directions for this equation are discreted by the Galerkin spectral methods.And then based on the discretization scheme,reliable a posteriori error estimates for the spectral approximation are derived.Some numerical examples are presented to verify the validity and applicability of the derived a posteriori error estimator.
基金supported by Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)National Science Foundation of China(10971074)+1 种基金Specialized Research Fund for the Doctoral Program of Higher Education(20114407110009)Hunan Provinical Innovation Foundation for Postgraduate(lx2009 B120)。
文摘This paper is concerned with recovery type a posteriori error estimates of fully discrete finite element approximation for general convex parabolic optimal control problems with pointwise control constraints.The time discretization is based on the backward Euler method.The state and the adjoint state are approximated by piecewise linear functions and the control is approximated by piecewise constant functions.We derive the superconvergence properties of finite element solutions.By using the superconvergence results,we obtain recovery type a posteriori error estimates.Some numerical examples are presented to verify the theoretical results.
文摘This article studies a posteriori error analysis of fully discrete finite element approximations for semilinear parabolic optimal control problems.Based on elliptic reconstruction approach introduced earlier by Makridakis and Nochetto[25],a residual based a posteriori error estimators for the state,co-state and control variables are derived.The space discretization of the state and co-state variables is done by using the piecewise linear and continuous finite elements,whereas the piecewise constant functions are employed for the control variable.The temporal discretization is based on the backward Euler method.We derive a posteriori error estimates for the state,co-state and control variables in the L^(∞)(0,T;L^(2)(Ω))-norm.Finally,a numerical experiment is performed to illustrate the performance of the derived estimators.
基金supported in part by Hunan Education Department Key Project 10A117 and Hunan Provincial Innovation Foundation for Postgraduate CX2010B247supported by the Foundation for Talent Introduction of Guangdong Provincial University,Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2008)and National Science Foundation of China(10971074)+3 种基金supported in part by the NSFC Key Project(11031006)Hunan Provincial NSF Project(10JJ7001)the NSFC for Distinguished Young Scholars(10625106)National Basic Research Program of China under the Grant 2005 CB321701.
文摘In this paper,we discuss the a posteriori error estimates of the mixed finite element method for quadratic optimal control problems governed by linear parabolic equations.The state and the co-state are discretized by the high order Raviart-Thomas mixed finite element spaces and the control is approximated by piecewise constant functions.We derive a posteriori error estimates for both the state and the control approximation.Such estimates,which are apparently not available in the literature,are an important step towards developing reliable adaptive mixed finite element approximation schemes for the control problem.
基金supported by the National Natural Science Foundation of China(Nos.12261024,11561014)Science and Technology Planning Project of Guizhou Province(Guizhou Kehe fundamental research-ZK[2022]No.324).
文摘In this paper,we discuss the conforming finite element method for a modified interior transmission eigenvalues problem.We present a complete theoretical analysis for the method,including the a priori and a posteriori error estimates.The theoretical analysis is conducted under the assumption of low regularity on the solution.We prove the reliability and efficiency of the a posteriori error estimators for eigenfunctions up to higher order terms,and we also analyze the reliability of estimators for eigenvalues.Finally,we report numerical experiments to show that our posteriori error estimator is effective and the approximations can reach the optimal convergence order.The numerical results also indicate that the conforming finite element eigenvalues approximate the exact ones from below,and there exists a monotonic relationship between the conforming finite element eigenvalues and the refractive index through numerical experiments.
基金supported by Guangdong Provincial‘Zhujiang Scholar Award Project’National Science Foundation of China 10671163+2 种基金the National Basic Research Program under the Grant 2005CB321703Scientific Research Fund of Hunan Provincial Education Department 06A069Hunan Provincial Innovation Foundation for Postgraduate S2008yjscx04。
文摘In this paper,we present an a posteriori error estimates of semilinear quadratic constrained optimal control problems using triangular mixed finite element methods.The state and co-state are approximated by the order k≤1 RaviartThomas mixed finite element spaces and the control is approximated by piecewise constant element.We derive a posteriori error estimates for the coupled state and control approximations.A numerical example is presented in confirmation of the theory.
基金the National Natural Science Foundation of China(Grant No.10771150)the National Basic Research Program of China(Grant No.2005CB321701)the Program for New Century Excellent Talents in University(Grant No.NCET-07-0584)
文摘Two residual-based a posteriori error estimators of the nonconforming Crouzeix-Raviart element are derived for elliptic problems with Dirac delta source terms.One estimator is shown to be reliable and efficient,which yields global upper and lower bounds for the error in piecewise W1,p seminorm.The other one is proved to give a global upper bound of the error in Lp-norm.By taking the two estimators as refinement indicators,adaptive algorithms are suggested,which are experimentally shown to attain optimal convergence orders.
基金The research of O.Karakashian was partially supported by National Science Foundation grant DMS-1216740The research of Y.Xing was partially supported by National Science Foundation grants DMS-1216454 and DMS-1621111.
文摘We construct and analyze conservative local discontinuous Galerkin(LDG)methods for the Generalized Korteweg-de-Vries equation.LDG methods are designed by writing the equation as a system and performing separate approximations to the spatial derivatives.The main focus is on the development of conservative methods which can preserve discrete versions of the first two invariants of the continuous solution,and a posteriori error estimates for a fully discrete approximation that is based on the idea of dispersive reconstruction.Numerical experiments are provided to verify the theoretical estimates.
文摘In this paper, we derive optimal order a posteriori error estimates for the local dis- continuous Galerkin (LDC) method for linear convection-diffusion problems in one space dimension. One of the key ingredients in our analysis is the recent optimal superconver- gence result in [Y. Yang and C.-W. Shu, J. Comp. Math., 33 (2015), pp. 323-340]. We first prove that the LDG solution and its spatial derivative, respectively, converge in the L2-norm to (p + 1)-degree right and left Radau interpolating polynomials under mesh re- finement. The order of convergence is proved to be p + 2, when piecewise polynomials of degree at most p are used. These results are used to show that the leading error terms on each element for the solution and its derivative are proportional to (p + 1)-degree right and left Radau polynomials. We further prove that, for smooth solutions, the a posteriori LDG error estimates, which were constructed by the author in an earlier paper, converge, at a fixed time, to the true spatial errors in the L2-norm at (.9(hp+2) rate. Finally, we prove that the global effectivity indices in the L2-norm converge to unity at (9(h) rate. These results improve upon our previously published work in which the order of convergence for the a posteriori error estimates and the global effectivity index are proved to be p+3/2 and 1/2, respectively. Our proofs are valid for arbitrary regular meshes using PP polynomials with p ≥ 1. Several numerical experiments are performed to validate the theoretical results.
基金We thank the anonymous referees for their valuable comments and suggestions which lead to an improved presentation of this paper. This work was supported by NSFC under the grant 11371199, 11226334 and 11301275, the Jiangsu Provincial 2011 Program (Collaborative Innovation Center of Climate Change), the Program of Natural Science Research of Jiangsu Higher Education Institutions of China (Grant No. 12KJB110013), Natural Science Foundation of Guangdong Province of China (Grant No. S2012040007993) and Educational Commission of Guangdong Province of China (Grant No. 2012LYM0122).
文摘In this paper, we study a weakly over-penalized interior penalty method for non-self- adjoint and indefinite problems. An optimal a priori error estimate in the energy norm is derived. In addition, we introduce a residual-based a posteriori error estimator, which is proved to be both reliable and efficient in the energy norm. Some numerical testes are presented to validate our theoretical analysis.
基金Supported by the National Key Basic Research and Development(973) Program of China (No. G19990328) and the Knowledge Innovation Program of the Chinese Academy of Sciences
文摘Adaptive methods have been rapidly developed and applied in many fields of scientific and engi- neering computing. Reliable and efficient a posteriori error estimates play key roles for both adaptive finite element and boundary element methods. The aim of this paper is to develop a posteriori error estimates for boundary element methods. The standard a posteriori error estimates for boundary element methods are obtained from the classical boundary integral equations. This paper presents hyper-singular a posteriori er- ror estimates based on the hyper-singular integral equations. Three kinds of residuals are used as the esti- mates for boundary element errors. The theoretical analysis and numerical examples show that the hyper- singular residuals are good a posteriori error indicators in many adaptive boundary element computations.
基金supported by National Science Foundation of USA(Grant No.DMS-1418934)the Sea Poly Project of Beijing Overseas Talents,National Natural Science Foundation of China(Grant Nos.11625101,91430213,11421101,11771338,11671304 and 11401026)+1 种基金Zhejiang Provincial Natural Science Foundation of China Projects(Grant Nos.LY17A010010,LY15A010015 and LY15A010016)Wenzhou Science and Technology Plan Project(Grant No.G20160019)
文摘A posteriori error estimators for the symmetric mixed finite element methods for linear elasticity problems with Dirichlet and mixed boundary conditions are proposed. Reliability and efficiency of the estimators are proved. Numerical examples are presented to verify the theoretical results.
基金The first author was supported by Guangdong Basic and Applied Basic Research Foundation(Grant Nos.2018A030307024 and 2020A1515011032)by National Natural Science Foundation of China(Grant No.11526097)+2 种基金The second author was supported by National Natural Science Foundation of China(Grant Nos.11871272 and 11871281)The third author was supported by National Natural Science Foundation of China(Grant No.11701197)The fourth author was supported by Guangdong Basic and Applied Basic Research Foundation(Grant No.2018A0303100016).
文摘In this paper,we derive a residual based a posteriori error estimator for a modified weak Galerkin formulation of second order elliptic problems.We prove that the error estimator used for interior penalty discontinuous Galerkin methods still gives both upper and lower bounds for the modified weak Galerkin method,though they have essentially different bilinear forms.More precisely,we prove its reliability and efficiency for the actual error measured in the standard DG norm.We further provide an improved a priori error estimate under minimal regularity assumptions on the exact solution.Numerical results are presented to verify the theoretical analysis.
基金supported by State Key Laboratory of Scientific and Engineering Computing,Chinese Academy of Sciences and National Nature Science Foundation under Grant 10801092Independent Innovation Foundation of Shandong University,IIFSDU and Shandong Nature Science Foundation ZR2012AM003+1 种基金supported by National Nature Science Foundation under Grant 11171337the National Basic Research Program under the Grant 2010CB731505.
文摘In this paper,we derive a posteriori error estimates for finite element approximations of the optimal control problems governed by the Stokes-Darcy system.We obtain a posteriori error estimators for both the state and the control based on the residual of the finite element approximation.It is proved that the a posteriori error estimate provided in this paper is both reliable and efficient.