Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing s...Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints.展开更多
Test is one of methods to acquire human-seat pressure distribution in driving, with the deficiency of being uneasy to obtain the stress information of soft tissue inside human body and the sheer force of interface bet...Test is one of methods to acquire human-seat pressure distribution in driving, with the deficiency of being uneasy to obtain the stress information of soft tissue inside human body and the sheer force of interface between human and seat, which can be obtained by simulation. But current simulation method focuses mainly on calculation itself other than combining it with posture prediction and cab packaging parameters, which cause it difficult to acquire accurate pressure calculation results without accurate posture of human body, and make it almost meaningless to design optimization. Therefore, a human body geometric model with posture change capability is built and linked up with Cascade Prediction Model(CPM), which takes cab packaging parameters as inputs. A detailed finite element model of driver human body is constructed and used to conduct the driver-seat interaction simulation between human body and seat. Good accordance of pressure distribution is observed between simulation and test, which validates the simulation. In addition to the distribution pattern, curves on key sections are used to analyze the pressure and shear stress on the seat surface, as well as soft tissue stress inside human body. The simulation shows that the maximum stress of buttocks locates under the ischial tuberosity, and the maximum stress of trunk occurs near the scapula posterior and the lower waist. These are the places where fatigue usually occurs. The maximum pressure of seat appears at the driver-seat contact area corresponding to the driver's maximum skin tissue stress. In order to guide the seat design and cab packaging and study the influence of posture to pressure distribution, finite element models for different levels of cab packaging parameters are created by using CPM. The pressure distributions are calculated and their tendencies varying with cab packaging parameters are obtained. The method presented provides a new way to accurately simulate the interaction between driver human body and seat, and to guide the seat design and cab packaging so as to improve seating comfort.展开更多
基金supported by National Natural Science Foundation of China(Grant No. 60975058)
文摘Non-obstacle design is critical to tailor physically handicapped workers in manufacturing system. Simultaneous consideration of variability in physically disabled users, machines and environment of the manufacturing system is extremely complex and generally requires modeling of physically handicapped interaction with the system. Most current modeling either concentrates on the task results or functional disability. The integration of physical constraints with task constraints is far more complex because of functional disability and its extended influence on adjacent body parts. A framework is proposed to integrate the two constraints and thus model the specific behavior of the physical handicapped in virtual environment generated by product specifications. Within the framework a simplified model of physical disabled body is constructed, and body motion is generated based on 3 levels of constraints(effecter constraints, kinematics constraints and physical constraints). The kinematics and dynamic calculations are made and optimized based on the weighting manipulated by the kinematics constraints and dynamic constraints. With object transferring task as example, the model is validated in Jack 6.0. Modelled task motion elements except for squatting and overreaching well matched with captured motion elements. The proposed modeling method can model the complex behavior of the physically handicapped by integrating both task and physical disability constraints.
基金supported by 2011 Scientific Frontier and Interdiscipline Reformation Project of Jilin University,China(Grant No.450060445100)
文摘Test is one of methods to acquire human-seat pressure distribution in driving, with the deficiency of being uneasy to obtain the stress information of soft tissue inside human body and the sheer force of interface between human and seat, which can be obtained by simulation. But current simulation method focuses mainly on calculation itself other than combining it with posture prediction and cab packaging parameters, which cause it difficult to acquire accurate pressure calculation results without accurate posture of human body, and make it almost meaningless to design optimization. Therefore, a human body geometric model with posture change capability is built and linked up with Cascade Prediction Model(CPM), which takes cab packaging parameters as inputs. A detailed finite element model of driver human body is constructed and used to conduct the driver-seat interaction simulation between human body and seat. Good accordance of pressure distribution is observed between simulation and test, which validates the simulation. In addition to the distribution pattern, curves on key sections are used to analyze the pressure and shear stress on the seat surface, as well as soft tissue stress inside human body. The simulation shows that the maximum stress of buttocks locates under the ischial tuberosity, and the maximum stress of trunk occurs near the scapula posterior and the lower waist. These are the places where fatigue usually occurs. The maximum pressure of seat appears at the driver-seat contact area corresponding to the driver's maximum skin tissue stress. In order to guide the seat design and cab packaging and study the influence of posture to pressure distribution, finite element models for different levels of cab packaging parameters are created by using CPM. The pressure distributions are calculated and their tendencies varying with cab packaging parameters are obtained. The method presented provides a new way to accurately simulate the interaction between driver human body and seat, and to guide the seat design and cab packaging so as to improve seating comfort.