期刊文献+
共找到2,296篇文章
< 1 2 115 >
每页显示 20 50 100
Chlorogenic acid alters the voltage-gated potassium channel currents of trigeminal ganglion neurons 被引量:3
1
作者 Yu-Jiao Zhang Xiao-Wen Lu +5 位作者 Ning Song Liang Kou Min-Ke Wu Fei Liu Hang Wang Jie-Fei Shen 《International Journal of Oral Science》 SCIE CAS CSCD 2014年第4期233-240,共8页
Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to it... Chlorogenic acid(5-caffeoylquinic acid, CGA) is a phenolic compound that is found ubiquitously in plants, fruits and vegetables and is formed via the esterification of caffeic acid and quinic acid. In addition to its notable biological functions against cardiovascular diseases, type-2 diabetes and inflammatory conditions, CGA was recently hypothesized to be an alternative for the treatment of neurological diseases such as Alzheimer's disease and neuropathic pain disorders. However, its mechanism of action is unclear.Voltage-gated potassium channel(Kv) is a crucial factor in the electro-physiological processes of sensory neurons. Kv has also been identified as a potential therapeutic target for inflammation and neuropathic pain disorders. In this study, we analysed the effects of CGA on the two main subtypes of Kv in trigeminal ganglion neurons, namely, the IK,Aand IK,Vchannels. Trigeminal ganglion(TRG)neurons were acutely disassociated from the rat TRG, and two different doses of CGA(0.2 and 1 mmol·L21) were applied to the cells.Whole-cell patch-clamp recordings were performed to observe alterations in the activation and inactivation properties of the IK,Aand IK,Vchannels. The results demonstrated that 0.2 mmol·L21CGA decreased the peak current density of IK,A. Both 0.2 mmol·L21and1 mmol·L21CGA also caused a significant reduction in the activation and inactivation thresholds of IK,Aand IK,V. CGA exhibited a strong effect on the activation and inactivation velocities of IK,Aand IK,V. These findings provide novel evidence explaining the biological effects of CGA, especially regarding its neurological effects. 展开更多
关键词 chlorogenic acid trigeminal ganglion neuron voltage-gated potassium channel whole-cell patch clamp
下载PDF
Role of Voltage-gated Potassium Channels in Pathogenesis of Chronic Pulmonary Heart Disease 被引量:6
2
作者 柯琴梅 吴霁 +2 位作者 田莉 李伟 杜以梅 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2013年第5期644-649,共6页
The influence of hypoxia on the activity of voltage-gated potassium channel in pulmonary artery smooth muscle cells (PASMCs) of rats and its roles in the pathogenesis of chronic pulmonary heart disease were investig... The influence of hypoxia on the activity of voltage-gated potassium channel in pulmonary artery smooth muscle cells (PASMCs) of rats and its roles in the pathogenesis of chronic pulmonary heart disease were investigated. Eighty male Sprague-Dawley rats were randomly allocated into control group (n=10), acute hypoxic group (n=10), and chronic hypoxic groups (n=60). The chronic hypoxic groups were randomly divided into 6 subgroups (n=10 each) according to the chronic hypoxic periods. The rats in the control group were kept in room air and those in acute hypoxic group in hypoxia envi- ronmental chamber for 8 h. The rats in chronic hypoxic subgroups were kept in hypoxia environmental chamber for 8 h per day for 5, 10, 15, 20, 25, and 30 days, respectively. The mean pulmonary arterial pressure (mPAP), right ventricular hypertrophy index (RVHI), and the current of voltage-gated potas- sium channel (IK) in PASMCs were measured. Results showed that both acute and chronic hypoxia could decrease the IK in PASMCs of rats and the I-V relationship downward shifted to the right. And the peak Ir density at +60mV decreased with prolongation of hypoxia exposure. No significant difference was noted in the density oflK (at +60 mV) and I-V relationship between control group and chronic hy- poxic subgroup exposed to hypoxia for 5 days (P〉0.05), but there was a significant difference between control group and chronic hypoxic subgroup exposed to hypoxia for 10 days (P〈0.05). Significant dif- ferences were noted in the IK density (at +60 mV) and I-V relationships between control group and chronic hypoxic subgroups exposed to hypoxia for 20 days and 30 days (P〈0.01). Compared with con- trol rats, the mPAP and RVHI were significantly increased after chronic exposure to hypoxia for 10 days (P〈0.05), which were further increased with prolongation of hypoxia exposure, and there were signifi- cant differences between control group and chronic hypoxic subgroups exposed to hypoxia for 20 days and 30 days (P〈0.01). Both the mPAP and the RVHI were negatively correlated with the density OflK (r---0.89769 and -0.94476, respectively, both P〈0.01). It is concluded that exposure to hypoxia may cause decreased activity of voltage-gated potassium channel, leading to hypoxia pulmonary vasocon- striction (HPV). Sustained HPV may result in chronic pulmonary hypertension, even chronic pulmonary heart disease, contributing to the pathogenesis of chronic pulmonary heart disease. 展开更多
关键词 potassium channel chronic pulmonary heart disease hypoxia pulmonary vasoconstriction
下载PDF
Motor Neuron Disease Associated with Voltage-Gated Potassium Channel Antibodies
3
作者 Eric M. Thompson Robert A. E gan 《Neuroscience & Medicine》 2011年第2期68-70,共3页
Introduction: Antibodies to voltage-gated potassium channels have been implicated in causing a host of peripheral and central nervous system disorders. However, the presence of these antibodies has not been previously... Introduction: Antibodies to voltage-gated potassium channels have been implicated in causing a host of peripheral and central nervous system disorders. However, the presence of these antibodies has not been previously associated with motor neuropathy. We describe the first case of acquired motor neuron disease associated with voltage-gated potas-sium channel antibodies. Case Report: The patient is an 81-year-old female who developed signs and symptoms of an idiopathic motor neuron disease. The patient was found to have increased antibodies to voltage-gated potassium chan-nels in the absence of a known metastatic or autoimmune process. Magnetic resonance imaging of the cervical spine demonstrated increased signal in the anterior horn regions of the cervical and upper thoracic spinal cord on T2-weighted imaging. The patient’s disease progression was refractory to both intravenous immunoglobulin and ster-oid therapy. Conclusion: Voltage-gated potassium channels may be causal or simply associated with motor neuron disease;this relationship needs to be elucidated. Testing for these antibodies may be warranted in cases of idiopathic rapidly progressing motor neuron disease. 展开更多
关键词 voltage-gated potassium channels Motor NEURON Disease ANTIBODY Central Nervous System DISORDERS
下载PDF
Upregulated voltage-gated potassium channel Kvl.3 on CD4+CD28null T lymphocytes from patients with acute coronary syndrome
4
作者 Shen Huang Cun-Tai Zhang +4 位作者 Jia-Rong Tang Jong Tang Lin Cai Zhen Zhang Ming-Gang Zhou 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2010年第1期40-46,共7页
关键词 急性冠脉综合征 T淋巴细胞 CD4 电压门控 钾通道 患者 膜片钳技术 CD28
下载PDF
Effect of genistein on voltage-gated potassium channels in guinea pig proximal colon smooth muscle cells
5
作者 Shi-Ying Li Bin-Bin Huang Shou Ouyang 《World Journal of Gastroenterology》 SCIE CAS CSCD 2006年第3期420-425,共6页
瞄准:调查 genistein (GST ) 的行动,一个广谱酷氨酸激酶禁止者,在在畿尼猪的电压门钾隧道上近似冒号平滑肌房间。方法:在畿尼猪的平滑肌房间近似冒号酶的联盟者被孤立。穿孔制霉菌素的整个房间补丁 clamp 技术被用来包括快短暂外... 瞄准:调查 genistein (GST ) 的行动,一个广谱酷氨酸激酶禁止者,在在畿尼猪的电压门钾隧道上近似冒号平滑肌房间。方法:在畿尼猪的平滑肌房间近似冒号酶的联盟者被孤立。穿孔制霉菌素的整个房间补丁 clamp 技术被用来包括快短暂外面的电流(IKto ) 记录钾水流并且推迟了整流器电流(IKdr ) 。钙依赖者钾水流的污染在一个外部答案没有钙和 0.2 mmol/L CdCl2 被最小化。结果:GST (10-100 micromol/L ) reversibly 并且 dose-dependently 与 22.0+/-6.9 micromol/L 的 IC50 价值减少了 IKto 的山峰振幅。到更小的程度, IKdr 也在两山峰水流被禁止并且支撑了电流。GST 不能完全堵住是的外面的钾水流很少的外面的钾水流,它对 GST 感觉迟钝。GST 没在不变的激活(n=6 ) 上并且在 IKto 的激活动力学(n=6 ) 有效果。正钒酸钠(1 mmol/L ) ,酷氨酸磷酸酶的一个有势力禁止者,显著地禁止的导致 GST 的抑制(P【0.05 ) 。结论:GST 能 dose-dependently 并且 reversibly 在畿尼猪堵住电压门钾隧道近似冒号平滑肌房间。 展开更多
关键词 木黄酮 电压 钾离子通道 结肠 平滑肌细胞 蛋白激酶
下载PDF
Diabetes-induced changes in cardiac voltage-gated ion channels 被引量:6
6
作者 Nihal Ozturk Serkan Uslu Semir Ozdemir 《World Journal of Diabetes》 SCIE 2021年第1期1-18,共18页
Diabetes mellitus affects the heart through various mechanisms such as microvascular defects,metabolic abnormalities,autonomic dysfunction and incompatible immune response.Furthermore,it can also cause functional and ... Diabetes mellitus affects the heart through various mechanisms such as microvascular defects,metabolic abnormalities,autonomic dysfunction and incompatible immune response.Furthermore,it can also cause functional and structural changes in the myocardium by a disease known as diabetic cardiomyopathy(DCM)in the absence of coronary artery disease.As DCM progresses it causes electrical remodeling of the heart,left ventricular dysfunction and heart failure.Electrophysiological changes in the diabetic heart contribute significantly to the incidence of arrhythmias and sudden cardiac death in diabetes mellitus patients.In recent studies,significant changes in repolarizing K+currents,Na+currents and L-type Ca^(2+)currents along with impaired Ca^(2+ )homeostasis and defective contractile function have been identified in the diabetic heart.In addition,insulin levels and other trophic factors change significantly to maintain the ionic channel expression in diabetic patients.There are many diagnostic tools and management options for DCM,but it is difficult to detect its development and to effectively prevent its progress.In this review,diabetes-associated alterations in voltage-sensitive cardiac ion channels are comprehensively assessed to understand their potential role in the pathophysiology and pathogenesis of DCM. 展开更多
关键词 DIABETES Action potential Cardiac ion channels L-type Ca^(2+)channels potassium channels Sodium channels
下载PDF
Isoprenylated Flavonoids as Cav3.1 Low Voltage-Gated Ca^(2+)Channel Inhibitors from Salvia digitaloides
7
作者 Jian-Jun Zhao Song-Yu Li +3 位作者 Fan Xia Ya-Li Hu Yin Nian Gang Xu 《Natural Products and Bioprospecting》 CAS 2021年第6期671-678,共8页
Saldigones A-C(1,3,4),three new isoprenylated flavonoids with diverse flavanone,pterocarpan,and isoflavanone architec-tures,were characterized from the roots of Salvia digitaloides,together with a known isoprenylated ... Saldigones A-C(1,3,4),three new isoprenylated flavonoids with diverse flavanone,pterocarpan,and isoflavanone architec-tures,were characterized from the roots of Salvia digitaloides,together with a known isoprenylated flavanone(2).Notably,it’s the first report of isoprenylated flavonoids from Salvia species.The structures of these isolates were elucidated by extensive spectroscopic analysis.All of the compounds were evaluated for their activities on Cav3.1 low voltage-gated Ca^(2+)channel(LVGCC),of which 2 strongly and dose-dependently inhibited Cav3.1 peak current. 展开更多
关键词 Salvia digitaloides Isoprenylated flavonoid Cav3.1 low voltage-gated Ca^(2+)channel(LVGCC)
下载PDF
Frequency Switches at Transition Temperature in Voltage-Gated Ion Channel Dynamics of Neural Oscillators
8
作者 Yasuomi D.Sato 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期152-155,共4页
Understanding of the mechanisms of neural phase transitions is crucial for clarifying cognitive processes in the brain. We investigate a neural oscillator that undergoes different bifurcation transitions from the big ... Understanding of the mechanisms of neural phase transitions is crucial for clarifying cognitive processes in the brain. We investigate a neural oscillator that undergoes different bifurcation transitions from the big saddle homoclinic orbit type to the saddle node on an invariant circle type, and the saddle node on an invariant circle type to the small saddle homoclinic orbit type. The bifurcation transitions are accompanied by an increase in thermodynamic temperature that affects the voltage-gated ion channel in the neural oscillator. We show that nonlinear and thermodynamical mechanisms are responsible for different switches of the frequency in the neural oscillator. We report a dynamical role of the phase response curve in switches of the frequency, in terms of slopes of frequency-temperature curve at each bifurcation transition. Adopting the transition state theory of voltagegated ion channel dynamics, we confirm that switches of the frequency occur in the first-order phase transition temperature states and exhibit different features of their potential energy derivatives in the ion channel. Each bifurcation transition also creates a discontinuity in the Arrhenius plot used to compute the time constant of the ion channel. 展开更多
关键词 Frequency Switches at Transition Temperature in voltage-gated Ion channel Dynamics of Neural Oscillators
下载PDF
Do age-associated changes of voltage-gated sodium channel isoforms expressed in the mammalian heart predispose the elderly to atrial fibrillation? 被引量:3
9
作者 Emmanuel Isaac Stephanie M Cooper +1 位作者 Sandra A Jones Mahmoud Loubani 《World Journal of Cardiology》 CAS 2020年第4期123-135,共13页
Atrial fibrillation(AF)is the most common cardiac arrhythmia worldwide.The prevalence of the disease increases with age,strongly implying an age-related process underlying the pathology.At a time when people are livin... Atrial fibrillation(AF)is the most common cardiac arrhythmia worldwide.The prevalence of the disease increases with age,strongly implying an age-related process underlying the pathology.At a time when people are living longer than ever before,an exponential increase in disease prevalence is predicted worldwide.Hence unraveling the underlying mechanics of the disease is paramount for the development of innovative treatment and prevention strategies.The role of voltage-gated sodium channels is fundamental in cardiac electrophysiology and may provide novel insights into the arrhythmogenesis of AF.Na_v1.5 is the predominant cardiac isoform,responsible for the action potential upstroke.Recent studies have demonstrated that Na_v1.8(an isoform predominantly expressed within the peripheral nervous system)is responsible for cellular arrhythmogenesis through the enhancement of pro-arrhythmogenic currents.Animal studies have shown a decline in Na_v1.5 leading to a diminished action potential upstroke during phase 0.Furthermore,the study of human tissue demonstrates an inverse expression of sodium channel isoforms;reduction of Na_v1.5 and increase of Na_v1.8 in both heart failure and ventricular hypertrophy.This strongly suggests that the expression of voltage-gated sodium channels play a crucial role in the development of arrhythmias in the diseased heart.Targeting aberrant sodium currents has led to novel therapeutic approaches in tackling AF and continues to be an area of emerging research.This review will explore how voltage-gated sodium channels may predispose the elderly heart to AF through the examination of laboratory and clinical based evidence. 展开更多
关键词 voltage-gated SODIUM channels Ageing Atrial FIBRILLATION NAV1.5 NAV1.8 Late SODIUM current Cardiac electrophysiology
下载PDF
Functional Expression of Voltage-Gated Sodium Channels Nav1.5 in Human Breast Caner Cell Line MDA-MB-231 被引量:2
10
作者 高瑞 王静 +2 位作者 沈怡 雷鸣 王泽华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2009年第1期64-67,共4页
Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies, and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumor... Voltage-gated sodium channels (VGSCs) are known to be involved in the initiation and progression of many malignancies, and the different subtypes of VGSCs play important roles in the metastasis cascade of many tumors. This study investigated the functional expression of Nav1.5 and its effect on invasion behavior of human breast cancer cell line MDA-MB-231. The mRNA and protein expression of Nav1.5 was detected by real time PCR, Western Blot and immunofluorescence. The effects of Nav1.5 on cell proliferation, migration and invasion were respectively assessed by MTT and Transwell. The effects of Nav1.5 on the secretion of matrix metalloproteases (MMPs) by MDA-MB-231 were analyzed by RT-PCR. The over-expressed Nav 1.5 was present on the membrane of MDA-MB-231 cells. The invasion ability in vitro and the MMP-9 mRNA expression were respectively decreased to (47.82±0.53)% and (43.97±0.64)% (P〈0.05) respectively in MDA-MB-23 t cells treated with VGSCs specific inhibitor tetrodotoxin (TTX) by blocking Navl.5 activity. It was concluded that Navl.5 functional expression potentiated the invasive behavior of human breast cancer cell line MDA-MB-231 by increasing the secretion of MMP-9. 展开更多
关键词 voltage-gated sodiam channels NAV1.5 INVASION migration breast cancer
下载PDF
Neuroprotective effect of interleukin-6 regulation of voltage-gated Na^+ channels of cortical neurons is time-and dose-dependent 被引量:4
11
作者 Wei Xia Guo-yi Peng +3 位作者 Jiang-tao Sheng Fang-fang Zhu Jing-fang Guo Wei-qiang Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第4期610-617,共8页
Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorl... Interleukin-6 has been shown to be involved in nerve injury and nerve regeneration, but the effects of long-term administration of high concentrations of interleukin-6 on neurons in the central nervous system is poorly understood. This study investigated the effects of 24 hour expo-sure of interleukin-6 on cortical neurons at various concentrations (0.1, 1, 5 and 10 ng/mL) and the effects of 10 ng/mL interleukin-6 exposure to cortical neurons for various durations (2, 4, 8, 24 and 48 hours) by studying voltage-gated Na+ channels using a patch-clamp technique. Volt-age-clamp recording results demonstrated that interleukin-6 suppressed Na+ currents through its receptor in a time- and dose-dependent manner, but did not alter voltage-dependent activation and inactivation. Current-clamp recording results were consistent with voltage-clamp recording results. Interleukin-6 reduced the action potential amplitude of cortical neurons, but did not change the action potential threshold. The regulation of voltage-gated Na+channels in rat corti-cal neurons by interleukin-6 is time- and dose-dependent. 展开更多
关键词 nerve regeneration brain injury inflammatory reaction INTERLEUKIN-6 voltage-gated Na+ channel cortical neurons cerebrospinal fluid NEUROIMMUNOMODULATION neuroprotection action potential patch clamp neurophysiology NSFC grants neural regeneration
下载PDF
Whole-cell recordings of voltage-gated Calcium,Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons
12
作者 Shuyun Huang Qing Cai +2 位作者 Weitian Liu Xiaoling Wang Tao Wang 《Journal of Nanjing Medical University》 2009年第2期122-126,共5页
Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituratio... Objective:To record Calcium, Potassium and Sodium currents in acutely isolated hippocampal pyramidal neurons. Methods:Hippocampal CA3 neurons were freshly isolated by 1 mg protease/3 ml SES and mechanical trituration with polished pipettes of progressively smaller tip diameters. Patch clamp technique in whole-cell mode was employed to record voltage-gated channel currents. Results:The procedure dissociated hippocampal neurons, preserving apical dendrites and several basal dendrites, without impairing the electrical characteristics of the neurons. Whole-cell patch clamp configuration was successfully used to record voltage-gated Ca^2+ currents, delayed rectifier K^+ current and voltage-gated Na^+ currents. Conclusion:Protease combined with mechanical trituration may be used for the dissociation of neurons from rat hippocampus. Voltage-gated channels currents could be recorded using a patch clamp technique. 展开更多
关键词 patch clamp HIPPOCAMPUS voltage-gated channels WHOLE-CELL
下载PDF
Molecular Docking Studies on Anticonvulsant Enaminones Inhibiting Voltage-Gated Sodium Channels
13
作者 Yayin Fang Jamiya Kirkland +2 位作者 Isis J. Amaye Patrice Jackson-Ayotunde Matthew George Jr. 《Open Journal of Physical Chemistry》 2019年第4期241-257,共17页
Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsan... Epilepsy is described as the most common chronic brain disorder. A typical symptom of epilepsy results in uncontrolled convulsions caused by temporary excessive neuronal discharges. Although several new anticon-vulsants have been introduced, some types of seizures have still not been adequately controlled with these new and current therapies. There is an urgent need to develop new anticonvulsant drugs to control the many different types of seizures. Many studies have shown that the epilepsies involve more than one mechanism and therefore may be responsible for the various types of observed seizures. Recently reported studies have shown that a group of newly synthesized 6 Hz active anticonvulsant fluorinated N-benzamide enaminones exhibited selective inhibitions of voltage-gated sodium (Nav) channels. Nav channels are responsible for the initial inward currents during the depolarization phases of the action potential in excitable cells. The activation and opening of Nav channels result in the initial phases of action potentials. We hypothesize that there is an essential pharmacophore model for the interactions between these enaminones and the active sites of Nav channels. The research reported here is focused on molecular docking studies of the interactions that occur between the fluorinated N-benzamide enaminones and the Nav channels. These studies may open an avenue for designing anticonvulsant drugs by inhibiting Nav channels. 展开更多
关键词 ANTICONVULSANT ENAMINONES voltage-gated Sodium channels STRUCTURE-BASED Drug Design MOLECULAR DOCKING 3D QSAR
下载PDF
Neurological diseases associated with autoantibodies targeting the voltage-gated potassium channel complex:immunobiology and clinical characteristics
14
作者 Domenico Plantone Rosaria Renna Tatiana Koudriavtseva 《Neuroimmunology and Neuroinflammation》 2016年第1期69-78,共10页
Voltage-gated potassium channels(VGKCs)represent a group of tetrameric signaling proteins with several functions,including modulation of neuronal excitability and neurotransmitter release.Moreover,VGKCs give a key con... Voltage-gated potassium channels(VGKCs)represent a group of tetrameric signaling proteins with several functions,including modulation of neuronal excitability and neurotransmitter release.Moreover,VGKCs give a key contribution to the generation of the action potential.VGKCs are complexed with other neuronal proteins,and it is now widely known that serum autoantibodies directed against VGKCs are actually directed against the potassium channel subunits only in a minority of patients.By contrast,these autoantibodies more commonly target three proteins that are complexed with alpha-dendrotoxin-labeled potassium channels in brain extracts.These three proteins are contactin-associated protein-2(Caspr-2),leucine-rich,glioma inactivated 1(LGI-1)protein and the protein Tag-1/contactin-2.Neoplasms are detected only in a minority of seropositive patients for VGKC complex-IgG and do not significantly associate with Caspr-2 or LGI-1.Among all the cancers described in association with VGKC complex-IgG,lung carcinoma,thymoma,and hematologic malignancies are the most commonly detected.We will review all the major neurological conditions associated with VGKC complex-IgG.These include Isaacs’syndrome,Morvan syndrome,limbic encephalitis,facio-brachial dystonic seizures,chorea and other movement disorders,epilepsy,psychosis,gastrointestinal neuromuscular diseases,a subacute encephalopathy that mimics Creutzfeldt-Jakob prion disease both clinically and radiologically and autoimmune chronic pain.The vast majority of these conditions are reversible by immunotherapy,and it is becoming increasingly recognized that early diagnosis and detection of VGKC complex-IgG is critical in order to rapidly start the treatment.As a result,VGKC complex-IgG are now part of the investigation of patients with unexplained subacute onset of epilepsy,memory or cognitive problems,or peripheral nerve hyperexcitability syndromes. 展开更多
关键词 Chronic pain epilepsy facio-brachial dystonic seizures leucine-rich glioma inactivated 1 protein limbic encephalitis movement disorders NEUROMYOTONIA voltage-gated potassium channels
原文传递
Effects Of ATP Sensitive potassium channel opener on the mRNA and pro- tein expressions of caspase-12 after cerebral ischemia-reperfusion in rats 被引量:19
15
作者 Hong ZHANG Li-Chun SONG +1 位作者 Chun-Hong JIA Yong-Li LU 《Neuroscience Bulletin》 SCIE CAS CSCD 2008年第1期7-12,共6页
Objective To investigate effects of K_ATP opener on the expressions of caspase-12 mRNA and protein, and to explore the role of endoplasmic reticulum (ER) stress pathway in the mechanism of K_ATP opener protecting ag... Objective To investigate effects of K_ATP opener on the expressions of caspase-12 mRNA and protein, and to explore the role of endoplasmic reticulum (ER) stress pathway in the mechanism of K_ATP opener protecting against neuronal apoptosis after cerebral ischemia-reperfusion. Methods Two hundred rats were randomly divided into four groups: sham operation group, ischemia-reperfusion group, K_ATP opener group, and K_ATP blocker group. The middle cerebral artery occlusion (MCAO) model was established by intraluminal suture occlusion method; neuronal apoptosis was detected by TUNEL staining. The mRNA and protein expressions of caspase-12 were detected by semi-quantitative RT-PCR and immunohisto-chemical staining, respectively. Results In ischemia-reperfusion group, K_ATP opener group and K_ATP blocker group, the number of apoptotic cells and the mRNA and protein expressions of caspase-12 gradually increased following cerebral reperfusion, and reached the peak at 24 h. In K_ATP opener group, The number of apoptotic cells was significantly less than that in ischemia-reperfusion group and K_ATP blocker group at 12 h, 24 h, 48 h and 72 h (P 〈 0.05 or P 〈 0.01); while the mRNA and protein levels of caspase-12 were significantly less than those in ischemia-reperfusion group and K_ATP blocker group at all times (P 〈 0.05 or P〈0.01). There were no differences between the ischemia-reperfusion group and K_ATP blocker group at each time (P〉 0.05). Conclusion K_ATP opener may protect neurons from apoptosis following the cerebral ischemia-reperfusion by inhibiting ER stress pathway. 展开更多
关键词 ATP sensitive potassium channel cerebral ischemia APOPTOSIS endoplasmic reticulum CASPASE-12
下载PDF
Bisoprolol reverses down-regulation of potassium channel proteins in ventricular tissues of rabbits with heart failure 被引量:6
16
作者 Xi Li Tingzhong Wang +3 位作者 Ke Han Xiaozhen Zhuo Qun Lu Aiqun Ma 《The Journal of Biomedical Research》 CAS 2011年第4期274-279,共6页
Remodeling of ion channels is an important mechanism of arrhythmia induced by heart failure (HF). We investigated the expression of potassium channel encoding genes in the ventricles of rabbit established by volumeo... Remodeling of ion channels is an important mechanism of arrhythmia induced by heart failure (HF). We investigated the expression of potassium channel encoding genes in the ventricles of rabbit established by volumeoverload operation followed with pressure-overload. The reversible effect of these changes with bisoprolol was also evaluated. The HF group exhibited left ventricular enlargement, systolic dysfunction, prolongation of corrected QT interval (QTc), and increased plasma brain natriuretic peptide levels in the HF rabbits. Several potassium channel subunit encoding genes were consistently down-regulated in the HF rabbits. After bisoprolol treatment, heart function was improved significantly and QTc was shortened. Additionally, the mRNA expression of potassium channel subunit genes could be partially reversed. The down-regulated expression of potassium channel subunits Kv4.3, Kv1.4, KvLQT1, minK and Kir 2.1 may contribute to the prolongation of action potential duration in the heart of rabbits induced by volume combined with pressure overload HF. Bisoprolol could partially reverse these down-regulations and improve heart function. 展开更多
关键词 heart failure potassium channel DOWN-REGULATION animal models
下载PDF
Extract from Buthus martensii Karsch is associated with potassium channels on glioma cells 被引量:2
17
作者 Mingxian Li Hongmei Meng +3 位作者 Shao Wang Min Huang Li Cui Weihong Lin 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第15期1147-1150,共4页
Catilan extracted from Leiurus quinquestriatus is a specific ion channel blocker.It can specifically bind chloride channels of glioma cells and kill these tumor cells.The questions remain as to whether antigliomatin,t... Catilan extracted from Leiurus quinquestriatus is a specific ion channel blocker.It can specifically bind chloride channels of glioma cells and kill these tumor cells.The questions remain as to whether antigliomatin,the extract from scorpion venom of Buthus martensii Karsch in China,can inhibit glioma growth,and whether this inhibition is correlated with ion channels of tumor cells.The present study treated rat C6 glioma cells with 0.8,1.2,and 1.6 μg/mL antigliomatin for 20 hours.Whole-cell patch clamp technique showed that antigliomatin delayed rectifier potassium channels of C6 glioma cells.Antigliomatin inhibited tumor growth,which could potentially involve potassium channels of tumor cells. 展开更多
关键词 scorpion venom antigliomatin BRAIN GLIOMA patch clamp potassium channel Chinese medicine neural regeneration
下载PDF
Effects of Ginkgo biloba extracts with mirodenafil on the relaxation of corpus cavernosal smooth muscle and the potassium channel activity of corporal smooth muscle cells 被引量:1
18
作者 Jung Jun Kim Deok Hyun Han +7 位作者 Soo Hyun Lim Tae Hun Kim Mee Ree Chae Kyung Jin Chung Sung Chul Kam Ju-Hong Jeon Jong Kwan Parks Sung Won Lee 《Asian Journal of Andrology》 SCIE CAS CSCD 2011年第5期742-746,共5页
In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activ... In this study, we investigated the effects of a combination of Ginkgo biloba extracts (GBE) and phosphodiesterase type 5 (PDE-5) inhibitors on the muscular tone of the corpus cavernosum and potassium channel activity of corporal smooth muscle cells. Strips of corpus cavernosum from male New Zealand white rabbits were mounted in organ baths for isometric tension studies. After contraction with 1 × 10^-5 mol I^-1 norepinephrine, GBE (0.01-1 mg ml^-1) and mirodenafil (0.01-100 nmol I^-1) were added together into the organ bath. In electrophysiological studies, whole-cell currents were recorded by the conventional patch-clamp technique in cultured smooth muscle cells of the human corpus cavernosum. The corpus cavemosum was relaxed in response to GBE in a dose-dependent manner (from 0.64%±8.35% at 0.01 mg ml^-1 to 52.28%±11.42% at 1 mg ml^-1). After pre-treatment with 0.03 mg ml^-1 of GBE, the relaxant effects of mirodenafil were increased at all concentrations, After tetraethylammonium (TEA) (1 mmol I^-1) administration, the increased effects were inhibited (P〈0.01). Extracellular administration of GBE increased the whole-cell K^+ outward currents in a dose-dependent fashion. The increase of the outward current was inhibited by I mmol 1-1 TEA. These results suggest that GBE could increase the relaxant potency of mirodenafil even at a minimally effective dose. The K+ flow through potassium channels might be one of the mechanisms involved in this synergistic relaxation. 展开更多
关键词 calcium-activated potassium channels erectile dysfunction Ginkgo biloba phosphodiesterase inhibitors smooth muscles
下载PDF
Changes of Expression of Stretch-activated Potassium Channel TREK-1 mRNA and Protein in Hypertrophic Myocardium 被引量:1
19
作者 程龙献 苏方成 +7 位作者 瑞奔曾哥 樊红 黄恺 王敏 彭红玉 梅春丽 赵芳 廖玉华 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2006年第1期31-33,共3页
The expression of stretch activated potassium channel TREK-1 mRNA and protein of hypertrophic myocardium was measured. Using a model of hypertrophy induced by coarctation of abdominal aorta in male Wistar rats, the ex... The expression of stretch activated potassium channel TREK-1 mRNA and protein of hypertrophic myocardium was measured. Using a model of hypertrophy induced by coarctation of abdominal aorta in male Wistar rats, the expression of TREK-1 mRNA and protein was detected by using semi quantitative RT-PCR and Western blot respectively. At 4th and 8th week after constriction of the abdominal aorta , rats developed significant left ventricular hypertrophy. As compared to sham-operated group, stretch-activated potassium channel TREK-1 mRNA was strongly expressed and protein was up regulated in operation groups (P〈0.05). It was concluded that the expression of TREK-1 was up-regulated in hypertrophic myocardium induced by chronic pressure overload in Wistar rats. 展开更多
关键词 hypertrophic myocardium stretch-activated potassium channel ventricular remodeling electrical remodeling
下载PDF
Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders 被引量:5
20
作者 Yukihiro Ohno 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第4期651-652,共2页
Astrocytic Kir4.1 channels and spatial potassium buffering:Astrocytes play a crucial role in maintaining the structural and functional integrity of the brain,which includes formation of the blood-brain barrier,mainte... Astrocytic Kir4.1 channels and spatial potassium buffering:Astrocytes play a crucial role in maintaining the structural and functional integrity of the brain,which includes formation of the blood-brain barrier,maintenance of water and ion homeostasis,metabolism of neurotransmitters and secretion of various neuroactive molecules. 展开更多
关键词 Astrocytic Kir4.1 potassium channels as a novel therapeutic target for epilepsy and mood disorders FIGURE
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部