期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
Effects of Potassium Ferrate and Low-Temperature Thermal Hydrolysis Co-Pretreatment on the Hydrolysis and Anaerobic Digestion Process of Waste Activated Sludge
1
作者 MA Yingpeng HAO Di +3 位作者 YAO Shuo ZHANG Dahai LI Xianguo FENG Lijuan 《Journal of Ocean University of China》 SCIE CAS CSCD 2023年第6期1583-1591,共9页
This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobi... This study evaluated the effect of potassium ferrate(PF)and low-temperature thermal hydrolysis co-pretreatment on the promotion of sludge hydrolysis process and the impact on acid production in the subsequent anaerobic digestion process.The analytical investigations showed that co-pretreatment significantly facilitated the hydrolysis process of the sludge and contributed to the accumulation of short-chain fatty acids(SCFAs).The pretreatment conditions under the optimal leaching of organic matter from sludge were hydrothermal temperature of 75℃,hydrothermal treatment time of 12 h,and PF dosage of 0.25 g g^(−1)TSS(total suspended solids),according to the results of orthogonal experiments.By pretreatment under proper conditions,the removal rate of soluble chemical oxygen demand(SCOD)achieved 71.8%at the end of fermentation and the removal rate of total phosphorus(TP)was 69.1%.The maximum yield of SCFAs was 750.3 mg L^(−1),7.45 times greater than that of the blank group.Based on the analysis of the anaerobic digestion mechanism,it was indicated that the co-pretreatment could destroy the floc structure on the sludge surface and improve organic matter dissolving,resulting in more soluble organic substances for the acidification process.Furthermore,microbial community research revealed that the main cause of enhanced SCFAs generation was an increase in acidogenic bacteria and a reduction of methanogenic bacteria. 展开更多
关键词 waste activated sludge potassium ferrate low-temperature thermal hydrolysis anaerobic digestion short-chain fatty acids
下载PDF
Effects of operating conditions on iron(hydr)oxides evolution and ciprofloxacin degradation in potassium ferrate-ozone stepwise oxidation system
2
作者 Xiaochen Li Yifan Wang +4 位作者 Ning Wang Mei Li Maomao Bai Jingtao Xu Hongbo Wang 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2024年第1期367-378,共12页
In this study,a stepwise oxidation system of potassium ferrate(K_(2)FeO_(4))combined with ozone(O+3)was used to degrade ciprofloxacin(CIP).The effects of pH and pre-oxidation time of K_(2)FeO_(4) on the evolution of K... In this study,a stepwise oxidation system of potassium ferrate(K_(2)FeO_(4))combined with ozone(O+3)was used to degrade ciprofloxacin(CIP).The effects of pH and pre-oxidation time of K_(2)FeO_(4) on the evolution of K_(2)FeO_(4) reduction products(iron(hydr)oxides)and CIP degradation were investigated.It was found that in addition to its own oxidation capacity,K_(2)FeO_(4) can also influence the treatment effect of CIP by changing the catalyst content.The presence of iron(hydr)oxides effectively enhanced the mineralization rate of CIP by catalyzing ozonation.The pH value can influence the content and types of the components with catalytic ozonation effect in iron(hydr)oxides.The K_(2)FeO_(4) pre-oxidation stage can produce more iron(hydr)oxides with catalytic components for subsequent ozonation,but the evolution of iron(hydr)oxides components was influenced by O_(3) treatment.It can also avoid the waste of oxidation capacity owing to the oxidation of iron(hydr)oxides by O_(3) and free radicals.The intermediate degradation products were identified by Fourier transform ion cyclotron resonance mass spectrometry(FT-ICR-MS).Besides,the degradation pathways were proposed.Among the degradation products of CIP,the product with broken quinolone ring structure only appeared in the stepwise oxidation system. 展开更多
关键词 potassium ferrate reduction products Catalytic ozonation CIPROFLOXACIN potassium ferrate pre-oxidation time
原文传递
Synergetic Bioproduction of Short-Chain Fatty Acids from Waste Activated Sludge Intensified by the Combined Use of Potassium Ferrate and Biosurfactants
3
作者 CHEN Yanyan YAO Shuo +2 位作者 ZHANG Dahai LI Xianguo FENG Lijuan 《Journal of Ocean University of China》 SCIE CAS 2024年第3期695-709,共15页
The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were expl... The synergetic effect and underlying mechanism of potassium ferrate(PF)with tea saponin(TS,a biosurfactant)in producing short chain fatty acids(SCFAs)from anaerobic fermentation of waste activated sludge(WAS)were explored in this work.Experimental results showed that 0.2 g PF(g TSS)^(-1)(total suspended solid)combined with 0.02 g TS(g TSS)^(-1) could further improve SCFAs’production,and the maximum SCFAs content reached 2008.7 mg COD L^(-1),which is 1.2 and 4.5 times higher than those with PF and TS individually added,respectively,and 5.3 times higher than that of blank WAS on Day 12.In the model substrates experiments,the degradation rates of bovine serum albumin and dextran with combination of PF and TS were 41.3%±0.1% and 48.5%±0.06%,respectively,on Day 3,which are lower than those in blank WAS(with degradation rates of 72.3%±0.5%and 90.3%±0.3%).It was revealed that the oxidative effect of PF and the solubilization of TS caused more organic matters to be dissolved out from WAS,providing a large number of biodegradable substances for subsequent SCFAs production.While WAS pretreated with the combination of PF and TS,the relative abundances of Firmicutes increased from 6.4%(blank)to 38.6%,and that of Proteobacteria decreased from 41.8%(blank)to 21.8%.The combination of PF and TS promoted the hydrolysis process of WAS by enriching Firmicutes,and then increased acetic acid production by inhibiting Proteobacteria that consumed SCFAs.Meanwhile,at the genus level,acidogenesis bacteria(e.g.,Proteiniclasticum and Petrimonas)were enriched whereas SCFAs consuming bacteria(e.g.,Dokdonella)were inhibited. 展开更多
关键词 waste activated sludge anaerobic fermentation potassium ferrate biosurfactant pretreatment
下载PDF
Potassium ferrate pretreatment promotes short chain fatty acids yield and antibiotics reduction in acidogenic fermentation of sewage sludge 被引量:1
4
作者 Zihao Qiao Suyun Xu +3 位作者 Wanqiu Zhang Shuyin Shi Wei Zhang Hongbo Liu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2022年第10期41-52,共12页
During the acidogenic fermentation converting waste activated sludge (WAS) into shortchain fatty acids (SCFA), hydrolysis of complex organic polymers is a limiting step and the transformation of harmful substances (su... During the acidogenic fermentation converting waste activated sludge (WAS) into shortchain fatty acids (SCFA), hydrolysis of complex organic polymers is a limiting step and the transformation of harmful substances (such as antibiotics) during acidogenic fermentation is unknown. In this study, potassium ferrate (KFeO) oxidation was used as a pretreatment strategy for WAS acidogenic fermentation to increase the hydrolysis of sludge and destruct the harmful antibiotics. Pretreatment with KFeOcan effectively increase the SCFA production during acidogenic fermentation and change the distribution of SCFA components.With the dosage of 0.2 g/g TS, the maximum SCFA yield was 4823 mg COD/L, which is 28.3times that of the control group;acetic acid accounts for more than 90% of the total SCFA. The higher dosage (0.5 g/g TS) can further increase the proportion of acetic acid, but inhibit the overall performance of SCFA production. Apart from the promotion of hydrolysis and acidogenesis, KFeOpretreatment can also simultaneously oxidizes and degrades part of the antibiotics in the sludge. When the dosage is 0.5 g/g TS, the degradation efficacy of antibiotics is the most significant, and the contents of ofloxacin, azithromycin, and tetracycline in the sludge are reduced by 69%, 42%, and 50%, respectively. In addition, KFeOpretreatment can also promote the release of antibiotics from sludge flocs, which is conducive to the simultaneous degradation of antibiotics in the subsequent biological treatment process. 展开更多
关键词 Acidogenic fermentation ANTIBIOTICS potassium ferrate Oxidation pretreatment Sewage sludge Volatile fatty acids
原文传递
Flotation behaviors of chalcopyrite and galena using ferrate(Ⅵ) as a depressant
5
作者 Yongxing Zheng Yusong Huang +3 位作者 Panjin Hu Xianhui Qiu Jinfang Lv Lingyun Bao 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第1期93-103,共11页
This paper investigated the effects of potassium ferrate(PF)on the flotation performances of chalcopyrite and galena.The flotation results showed that PF obviously depressed galena,but had little effects on the floata... This paper investigated the effects of potassium ferrate(PF)on the flotation performances of chalcopyrite and galena.The flotation results showed that PF obviously depressed galena,but had little effects on the floatability of chalcopyrite within pH range of 4.0–12.0.Zeta potential tests showed that the addition of PF induced the formation of more amounts of hydrophilic species on the surface of galena under an alkaline environment.Industrial grade O-isopropyl-N-ethyl thionocarbamate(IPETC)chemically adsorbed on the surface of the PF-treated chalcopyrite and galena after its addition.Contact angle measurements showed that with the addition of PF,the contact angle of the galena surface significantly decreased compared with the chalcopyrite surface.Localized electrochemical impedance spectroscopy(LEIS)tests showed that the addition of PF increased the impedance of the galena surface.X-ray photoelectron spectroscopy(XPS)analyses revealed that the formation of hydrophilic species,namely lead sulfite,lead hydroxide and ferric hydroxide,on the galena surface,decreased its floatability in the presence of PF,while the formation of hydrophobic species,namely copper disulfide and elemental sulfur,on the chalcopyrite surface,maintained its floatability.Finally,a descriptive model for the reaction of PF with chalcopyrite and galena was proposed. 展开更多
关键词 FLOTATION CHALCOPYRITE GALENA potassium ferrate
下载PDF
Preparation of Solid Waste-Based Activated Carbon and Its Adsorption Mechanism for Toluene 被引量:2
6
作者 Li Zhi Li Yunpeng +3 位作者 Liu Jun Si Wenzhe Zhang Yongfa Li Junhua 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第1期100-110,共11页
Regenerated activated carbon(RAC)samples were prepared by carbon activation using waste activated carbon from solid waste resources as the carbon source precursor coupled with adding alkaline additives,and then were f... Regenerated activated carbon(RAC)samples were prepared by carbon activation using waste activated carbon from solid waste resources as the carbon source precursor coupled with adding alkaline additives,and then were further modified by potassium ferrate to finally prepare high-performance carbon for VOCs adsorption.At the same time,the samples before and after modification were systematically studied through characterization techniques such as SEM,Raman spectrometry,FT-IR,XPS,and dynamic/static adsorption.The results showed that the specific surface area and pore volume of the RAC after modification by the strong oxidant potassium ferrate increased by 1.4 times;the degree of defects was enhanced and the content of oxygen-containing functional groups on the surface increased significantly.Among them,the sample modified with potassium ferrate for 24 h had the best dynamic toluene adsorption performance(375.5 mg/g),and the dynamic adsorption capacity was twice that of the original sample(192.8 mg/g).The static adsorption test found that the maximum adsorption capacity of RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h was 796 mg/g,which indicated that the potassium ferrate modification treatment could significantly increase the VOCs adsorption performance of RAC.In addition,through consecutive toluene adsorption-desorption cycle tests,it was found that the RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h sample still retained 91%of adsorption activity after the fifth regeneration cycle.This indicates that RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h has good cycle stability and great application value for the efficient purification of industrial waste VOCs gas. 展开更多
关键词 waste activated carbon toluene adsorption potassium ferrate modification oxygen-containing functional groups regeneration ability
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部