Background Potassium(K)is an essential nutrient for plant growth and development.However,plant fertilization ignoring the soil K level is very likely to cause excessive fertilizer use,and further arouse a series of si...Background Potassium(K)is an essential nutrient for plant growth and development.However,plant fertilization ignoring the soil K level is very likely to cause excessive fertilizer use,and further arouse a series of side effects.This study investigated the response of cotton growth to different soil K levels and the uptake of major nutrients,aiming to evaluate the appropriate K supply level for cotton growth.Using a random block design with 6 soil K levels,we conducted 18 micro-zones field experiments over two continuous years.The soil available K concentration of each treatment was K1(99.77-100.90 mg·kg^(-1)),K2(110.90-111.26 mg·kg^(-1)),K3(123.48-128.88 mg·kg^(-1)),K4(140.13-145.10 mg·kg^(-1)),K5(154.43-155.38 mg·kg^(-1)),and K6(165.77-168.75 mg·kg^(-1)).Cotton nutrient contents,soil nutrient contents,accumulation and distribution of dry matter in cotton were determined,and the relationships between K content in soil and plants and dry matter accumulation were analyzed.Results The soil K content had a significantly positive relationship with dry matter and K accumulation in cotton plants.There were significant differences in dry matter accumulation,single-plant seed cotton yield,mineral nutrient uptake and the proportion of K accumulation in reproductive organs among different soil K levels.The results showed that there was significant difference between K4 and lower K level treatments(K1 and K2),but no significant difference between K4 and higher K level treatments(K5 and K6)in dry matter,single-plant seed cotton yield,or accumulation,distribution and seed cotton production efficiency of N,P and K.Conclusion The soil K level of K4 was able to provide sufficient K for cotton growth in our experiment.Therefore,when the soil K level reached 140.13 mg·kg^(-1),further increasing the soil K concentration no longer had a significant positive effect on cotton growth.展开更多
Sugar beet(Beta vulgaris L.) is an industrial crop, grown worldwide for sugar production. In Pakistan, sugar is mostly extracted from sugarcane, soil and environmental conditions are equally favorable for sugar beet...Sugar beet(Beta vulgaris L.) is an industrial crop, grown worldwide for sugar production. In Pakistan, sugar is mostly extracted from sugarcane, soil and environmental conditions are equally favorable for sugar beet cultivation. Beet sugar contents are higher than sugarcane sugar contents, which can be further increased by potassium(K) fertilization. Total K concentration is higher in Pakistani soils developed from mica minerals, but it does not represent plant available K for sustainable plant growth. A pot experiment was conducted in the wire-house of Institute of Soil and Environmental Sciences at University of Agriculture Faisalabad, Pakistan. K treatments were the following: no K(K_0), K application at 148 kg ha^(–1)(K_1) and 296 kg ha^(–1)(K_2). Irrigation levels were used as water sufficient at 60% water holding capacity and water deficient at 40% water holding capacity. The growth, yield and beet quality data were analyzed statistically using LSD. The results revealed that increase in the level of K fertilization at water sufficient level significantly increased plant growth, beet yield and industrial beet sugar content. The response of K fertilization under water deficient condition was also similar, however overall sugar production was less than that in water sufficient conditions. It is concluded from this study that K application could be used not only to enhance plant growth and beet yield but also enhance beet sugar content both under water-deficient as well as water-sufficient conditions.展开更多
基金supported by Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciencesthe earmarked fund of China Agricultural Research System of China(CARS-15-11).
文摘Background Potassium(K)is an essential nutrient for plant growth and development.However,plant fertilization ignoring the soil K level is very likely to cause excessive fertilizer use,and further arouse a series of side effects.This study investigated the response of cotton growth to different soil K levels and the uptake of major nutrients,aiming to evaluate the appropriate K supply level for cotton growth.Using a random block design with 6 soil K levels,we conducted 18 micro-zones field experiments over two continuous years.The soil available K concentration of each treatment was K1(99.77-100.90 mg·kg^(-1)),K2(110.90-111.26 mg·kg^(-1)),K3(123.48-128.88 mg·kg^(-1)),K4(140.13-145.10 mg·kg^(-1)),K5(154.43-155.38 mg·kg^(-1)),and K6(165.77-168.75 mg·kg^(-1)).Cotton nutrient contents,soil nutrient contents,accumulation and distribution of dry matter in cotton were determined,and the relationships between K content in soil and plants and dry matter accumulation were analyzed.Results The soil K content had a significantly positive relationship with dry matter and K accumulation in cotton plants.There were significant differences in dry matter accumulation,single-plant seed cotton yield,mineral nutrient uptake and the proportion of K accumulation in reproductive organs among different soil K levels.The results showed that there was significant difference between K4 and lower K level treatments(K1 and K2),but no significant difference between K4 and higher K level treatments(K5 and K6)in dry matter,single-plant seed cotton yield,or accumulation,distribution and seed cotton production efficiency of N,P and K.Conclusion The soil K level of K4 was able to provide sufficient K for cotton growth in our experiment.Therefore,when the soil K level reached 140.13 mg·kg^(-1),further increasing the soil K concentration no longer had a significant positive effect on cotton growth.
文摘Sugar beet(Beta vulgaris L.) is an industrial crop, grown worldwide for sugar production. In Pakistan, sugar is mostly extracted from sugarcane, soil and environmental conditions are equally favorable for sugar beet cultivation. Beet sugar contents are higher than sugarcane sugar contents, which can be further increased by potassium(K) fertilization. Total K concentration is higher in Pakistani soils developed from mica minerals, but it does not represent plant available K for sustainable plant growth. A pot experiment was conducted in the wire-house of Institute of Soil and Environmental Sciences at University of Agriculture Faisalabad, Pakistan. K treatments were the following: no K(K_0), K application at 148 kg ha^(–1)(K_1) and 296 kg ha^(–1)(K_2). Irrigation levels were used as water sufficient at 60% water holding capacity and water deficient at 40% water holding capacity. The growth, yield and beet quality data were analyzed statistically using LSD. The results revealed that increase in the level of K fertilization at water sufficient level significantly increased plant growth, beet yield and industrial beet sugar content. The response of K fertilization under water deficient condition was also similar, however overall sugar production was less than that in water sufficient conditions. It is concluded from this study that K application could be used not only to enhance plant growth and beet yield but also enhance beet sugar content both under water-deficient as well as water-sufficient conditions.