β-lactam antibiotics in aquatic environment have severely damaged ecological stability and caused a series of environmental pollution problems to be solved urgently.Herein,a novel composite photocatalyst prepared by ...β-lactam antibiotics in aquatic environment have severely damaged ecological stability and caused a series of environmental pollution problems to be solved urgently.Herein,a novel composite photocatalyst prepared by loading carbon dots(CDs)onto rod-like CoFe_(2)O_(4)(CFO),which can effectively degrade amoxicillin(AMX)by photocata lytic/peroxy mono sulfate(PMS)activation under visible light irradiation.The degradation results exhibits that the optimal degradation efficiency with 97.5%within 80 min is achievd by the CDs-CFO-5 composite.Such enhanced activity is ascribed to the introduction of CDs that effectively improves the separation efficiency of photogenerated electron pairs and creates new active sites as electron bridges that improve the photocata lytic performance.More importantly,a strong synergistic between CDs and photo-induced electrons generated from CFO can further activiate PMS to provide more SO4-·and·OH radicals for boosting the degradation ability towards AMX.The present study aims to elucidate positive role of CDs in photocata lytic/peroxy monosulfate activation during the degradation reaction.展开更多
K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and L...K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and LiOH-H2O as starting materials and were characterized by X-ray diffractometry, scanning electron microscopy, and BET. The catalytic activity of titanate catalysts on PM oxidation was evaluated using the temperature programmed oxidation (TPO) method. The test results showed that the perovskite structure of K2Ti205 was still retained after doping a small amount of Li, and the catalytic performance of LixK2-xTi2O5 had been improved significantly compared with that of K2Ti2O5. Li0.15K1.85Ti205 catalyst had the highest catalytic activity with an ignition temperature of 210℃ and a peak temperature of 290℃. The catalytic activity of both K2Ti2O5 and LixK2-xTi2O5 under intimate contact was higher than that under loose contact. When the exhaust gas flow rate was around 100 mL/min, the catalyst samples showed a highest activity. The Li doped K2Ti2O5 could be an excellent candidate for PM oxidation due to its high oxidation activity, water stability, resistance to sulfur poisoning and economical advantages.展开更多
基金founding support from the National Natural Science Foundation of China(Nos.21906072,22006057 and 31971616)the Natural Science Foundation of Jiangsu Province(BK20190982)+4 种基金“Doctor of Mass Entrepreneurship and Innovation”Project in Jiangsu Province,Henan Postdoctoral Foundation(202003013)Doctoral Scientific Research Foundation of Jiangsu University of Science and Technology(China)(1062931806 and 1142931803)the Science and Technology Research Project of the Department of Education of Jilin Province(JJKH20200039KJ)the Science and Technology Research Project of Jilin City(20190104120,201830811)the Project of Jilin Provincial Science and Technology Development Plan(20190201277JC,20200301046RQ,YDZJ202101ZYTS070)。
文摘β-lactam antibiotics in aquatic environment have severely damaged ecological stability and caused a series of environmental pollution problems to be solved urgently.Herein,a novel composite photocatalyst prepared by loading carbon dots(CDs)onto rod-like CoFe_(2)O_(4)(CFO),which can effectively degrade amoxicillin(AMX)by photocata lytic/peroxy mono sulfate(PMS)activation under visible light irradiation.The degradation results exhibits that the optimal degradation efficiency with 97.5%within 80 min is achievd by the CDs-CFO-5 composite.Such enhanced activity is ascribed to the introduction of CDs that effectively improves the separation efficiency of photogenerated electron pairs and creates new active sites as electron bridges that improve the photocata lytic performance.More importantly,a strong synergistic between CDs and photo-induced electrons generated from CFO can further activiate PMS to provide more SO4-·and·OH radicals for boosting the degradation ability towards AMX.The present study aims to elucidate positive role of CDs in photocata lytic/peroxy monosulfate activation during the degradation reaction.
基金supports provided for this research by the Education Department of Liaoning Province of China (No. 2009T061)Ministry of Education of China (No. [2010] 1561)
文摘K2Ti2O5 and LixK2-xTi2O5 samples with varying K contents (x=0.125, 0.15, 0.3), targeted on removal of two main environmental pollutants: PM and NOx, were synthesized by the solid state method using TiO2, KNO3 and LiOH-H2O as starting materials and were characterized by X-ray diffractometry, scanning electron microscopy, and BET. The catalytic activity of titanate catalysts on PM oxidation was evaluated using the temperature programmed oxidation (TPO) method. The test results showed that the perovskite structure of K2Ti205 was still retained after doping a small amount of Li, and the catalytic performance of LixK2-xTi2O5 had been improved significantly compared with that of K2Ti2O5. Li0.15K1.85Ti205 catalyst had the highest catalytic activity with an ignition temperature of 210℃ and a peak temperature of 290℃. The catalytic activity of both K2Ti2O5 and LixK2-xTi2O5 under intimate contact was higher than that under loose contact. When the exhaust gas flow rate was around 100 mL/min, the catalyst samples showed a highest activity. The Li doped K2Ti2O5 could be an excellent candidate for PM oxidation due to its high oxidation activity, water stability, resistance to sulfur poisoning and economical advantages.