The Tarim Basin in China comprises eight sets of sandstone reservoirs, five of which are investigated in detail in this study. The main purpose of this study is to investigate the hydrocarbon charging histories of res...The Tarim Basin in China comprises eight sets of sandstone reservoirs, five of which are investigated in detail in this study. The main purpose of this study is to investigate the hydrocarbon charging histories of reservoirs by applying K-Ar dating of authigenic illites. The ages of authigenic illites from the Lower Silurian bituminous sandstones in the Central Uplift area range from 383.5 to 235.2 Ma, suggesting that the Silurian oil accumulations were formed from the late Caledonian till the late Hercynian. The ages of authigenic illites from the Upper Devonian Donghe Sandstone reservoirs range from 263.8 to 231.3 Ma, indicating that hydrocarbon accumulations within the Donghe sandstone were formed mainly in the late Hercynian. The authigenic illites ages from the Lower Jurassic Yangxia Group sandstones in the Yinan-2 gas reservoir (Yinan-2, Kuqa Depression) range from 28.1 to 23.9 Ma, suggesting that the initial hydrocarbon charging occurred in the Miocene. The ages of the authigenic illites from the Lower Cretaceous sandstones in the Akemomu gas field (Ake-1, Kashi Sag, Southwest Depression) range from 22.6 to 18.8 Ma, indicating a probable early oil accumulation or early migration of hydrocarbon within this area. The illites from the Paleogene sandstones in the Dina-2 gas reservoir (Dina-201, Kuqa Depression) have a detrital origin; they cannot be used to study the hydrocarbon charging histories. The ages of authigenic illites in the underlying Cretaceous sandstones in the same well (Dina-201) range from 25.5 to 15.5 Ma, indicating that hydrocarbon charging in this reservoir probably occurred within the Miocene. This study highlights the potential of applying K-Ar dating of authigenic illites to investigate the timing of hydrocarbon charging histories of the Tarim Basin reservoir sandstones.展开更多
Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar a...Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar age data from fault gouge samples collected from the Red River Shear Zone at Lao Cai province,Vietnam.The fault gouge samples were separated into three grain-size fractions(〈0.1 μm,0.1-0.4 μm and 0.4-1.0 μm).The results show that the K-Ar age values decrease from coarser to finer grain fractions(24.1 to 19.2 Ma),suggesting enrichment in finer fraction of morerecently grown authigenic illites.The timing of the fault movement are the lower intercept ages at 0%detrital illite(19.2 ± 0.92 Ma and 19.4 ± 0.49 Ma).In combination with previous geochronological data,this result indicates that the metamorphism of the Day Nui Con Voi(DNCV) metamorphic complex took place before ca.26.8 Ma.At about 26.8 Ma-25 Ma,the fault strongly acted to cause the rapid exhumation of the rocks along the Red River-Ailoa Shan Fault Zone(RR-ASFZ).During brittle deformation,the DNCV slowly uplifted,implying weak movement of the fault.This brittle deformation might have lasted for ca.5 Ma.展开更多
In the Ordos basin, two distinct thermal events of different ages have been identified for the first time by means of K-Ar dating combined with illite crystallinity analysis. For the Late Triassic and Late Permian sam...In the Ordos basin, two distinct thermal events of different ages have been identified for the first time by means of K-Ar dating combined with illite crystallinity analysis. For the Late Triassic and Late Permian samples, the K-Ar ages of the < 0.2μm fractions (159-173 Ma) reflect an illitization age related to the Yanshanian movement and indicate a short thermal event in the Middle Jurassic; the K-Ar ages of the <2 μm fractions (210-308 Ma) are interpreted as mixed ages of detrital material and authigenic illites. The K-Ar ages of both < 0.2μm and < 2μm fractions of a Middle Cambrian sample (368 Ma and 419 Ma) correspond to the ages of the metamorphism and earliest granite intrusion in the northern Caledonian Qinling fold zone (380-420 Ma) and show a thermal event during Silurian-Devonian time.展开更多
To accurately determine the chronological framework of climatic variations recorded by various Martian terrains, the absolute ages of Martian events and cratering rate need to be constrained by either in situ dating o...To accurately determine the chronological framework of climatic variations recorded by various Martian terrains, the absolute ages of Martian events and cratering rate need to be constrained by either in situ dating or returned samples. In situ K-Ar dating is currently a more plausible dating technique as compared with sample return. Jarosite(KFe_(3)[SO_(4)]_(2)[OH]_(6)) is the only confirmed K sulfate mineral that is widely present on Mars, as indicated by in situ detection, orbital remote sensing, and meteorite studies. Jarosite can be used for precise K-Ar and (40)Ar/(39)Ar dating. The preservation of jarosite on Mars provides information about the nature and duration of aqueous processes on the Martian surface. Different ages of Martian jarosite represent the key to constraining the transition from Martian surface water activity to arid climatic conditions. This paper summarizes recent advances in our knowledge of the spatial distribution of Martian jarosite, its mineralogical properties and stability on Mars, the Ar diffusion kinetics of jarosite, and the current status of in situ K-Ar dating. Moreover, we examine the key scientific issues to be addressed for in situ K-Ar dating of jarosite and Martian sample return missions, and discuss future research directions.展开更多
HDP09 core drilled in Lake Khuvsgul,Mongoria,at 50°52'48 'N,100°26'30' E where the water depth is 222.25 m reached to the depth of ~60 m below lake floor in 2006.The bottom part of the core c...HDP09 core drilled in Lake Khuvsgul,Mongoria,at 50°52'48 'N,100°26'30' E where the water depth is 222.25 m reached to the depth of ~60 m below lake floor in 2006.The bottom part of the core consists of alkali basalt.This basalt consists of the basement of the lake Khuvsgul based on its bulk chemistry and core position plotted on the seismic profile.K-Ar age of the basalt is(8.5±0.2) Ma,which is concordant with the on-land basalt distributed in the eastern part of the lake,and implies the maximum age of the Lake Khuvsgul formation.展开更多
Two eruption episodes are identified through systematic field investigations and K-Ar dating of the late Mesozoic volcanic rocks in the North Huaiyang belt (NHB), Dabie orogenic belt, of which the earlier volcanic sui...Two eruption episodes are identified through systematic field investigations and K-Ar dating of the late Mesozoic volcanic rocks in the North Huaiyang belt (NHB), Dabie orogenic belt, of which the earlier volcanic suite termed Maotanchang Fm. (Fm.) occurring at Jinzhai, Xianhualing and Maotanchang, etc., was erupted from 149 Ma to 138 Ma. The other named Xiaotian Fm. mainly distributed at Xiaotian, Shucheng, etc., was formed between 132 Ma and 116 Ma. During the eruption gap of the two volcanic suites deposited a volcano-sedimentary conglomerate layer, which are composed of the multi-compositional gravels, including the North Dabie orthogneiss complex (NDOC), volcanic gravels, etc. These volcanic gravels in the conglomerate layer show identical geochemical and isotopic compositions (87Sr/86Sr(t) =0.7084-0.7092,εNd(t) =-21.8--24.4) to the Maotanchang Fm. volcanic rocks (87Sr/86Sr = 0.7086-0.7102,εNd = -19.2-24.4), but significantly distinct from those of Xiaotian Fm. (87Sr/86Sr = 0.7076-0.7084, εNd=展开更多
Two grabens were developed in the Yi-Shu segment of the Tan-Lu fault zone (TLFZ) during its extensional activities, and are now confined by four major NNE-trending normal faults and filled with Cretaceous sediments. T...Two grabens were developed in the Yi-Shu segment of the Tan-Lu fault zone (TLFZ) during its extensional activities, and are now confined by four major NNE-trending normal faults and filled with Cretaceous sediments. These faults were developed due to their reactivities, containing gouge and cutting the graben sediments. Detailed fieldwork demonstrates that the faults experienced sinistral transtensional moment related to regional NE-SW extension during the reactivity. X-ray diffraction (XRD) analysis of the finest gouge samples gives illite crystallinity values higher than 0.42°Δ2θ, indicating temperatures experienced by the gouge samples were less than 150°C. From the relation between K-Ar data and proportions of detrital illite in different size fractions of the gouge samples, we conclude that refaulting for the western boundary fault of the TLFZ, abbreviated to F4, took place at ca. 90 Ma and for the eastern boundary fault, abbreviated to F1, happened from 70 to 60 Ma. During the two phases of reactivity imposed by the same NE-SW extension, the TLFZ experienced uplifting and no sediments were deposited in the two grabens. It is suggested that the TLFZ experienced extension during the Late Cretaceous, which supports the inference that lithospheric thinning was still undergoing in the east of the North China Craton during the Late Cretaceous magmatic hiatus.展开更多
Five Late-Cenozoic olivine basalt samples, taken from 3 young volcanoes (Keluo, Lianhuashan and Qinglongshan) located in the north of Heilongjian Province, were dated by the conventional K-Ar dating method. The appare...Five Late-Cenozoic olivine basalt samples, taken from 3 young volcanoes (Keluo, Lianhuashan and Qinglongshan) located in the north of Heilongjian Province, were dated by the conventional K-Ar dating method. The apparent ages of whole rock are (0.06±0.01) Ma,( 0.15±0.03) Ma, (0.17±0.02) Ma, (21.10±0.13) Ma and (24.46±0.10) Ma, respectively. In the crushed sample grains (mush number 80-100)olivine(including phynocryst and xenocryst)was picked out under a binocular microscope, then apparent ages obtained are (0.03±0.01) Ma, (0.06±0.01) Ma, (0.07±0.03) Ma, (2.31±0.02) Ma and (1.50±0.21) Ma, respectively. The apparent ages of the olivine-picked out sample are come down (younger)50 to over 90. There are a lot of the Late-Cenozoic volcanic olivine basalt outcropping in eastern China, probably the age-datings of those basalt samples in which olivine grains are unpicked out are older than the true geological ages. The inference and conclusion drawn from those datings should be renewed.展开更多
Reconstruction of uplift history of the Tibetan Plateau is crucial for understanding its environmental impacts. The Oiyug Basin in southern Tibet contains multiple periods of sedimentary sequences and volcanic rocks t...Reconstruction of uplift history of the Tibetan Plateau is crucial for understanding its environmental impacts. The Oiyug Basin in southern Tibet contains multiple periods of sedimentary sequences and volcanic rocks that span much of the Cenozoic and has great potential for further studying this issue. However, these strata were poorly dated. This paper presents a chronological study of the 145 m thick and horizontally-distributed lacustrine sequence using paleomagnetic method as well as a K-Ar dating of the underlying volcanic rocks. Based on these dating results, a chronostratigraphic framework and the basin-developmental history have been established for the past 15 Ma, during which three tectonic stages are identified. The period of 15-8.1 Ma is characterized by intense volcanic activities involving at least three major eruptions. Subsequently, the basin came into a tectonically quiescent period and a lacustrine sedimentary sequence was developed. Around 2.5 Ma, an N-S fault occurred across the southern margin of the basin, leading to the disappearance of the lake environment and the development of the Oiyug River. The Gyirong basin on northern slope of the Himalayas shows a similar basin developmental history and thus there is a good agreement in tectonic activities between the Himalayan and Gangdise orogenic belts. Therefore, the tectonic evolution stages experienced by the Oiyug Basin during the past 15 Ma could have a regional significance for southern Tibet. The chronological data obtained from this study may provide some constraints for further studies with regard to the tectonic processes and environmental changes in southern Tibetan Plateau.展开更多
Evolution history of the volcano is essential not only to characterize the volcano, but also consider magma genesis beneath the volcano. Most of the stratovolcanoes in northeast Japan follow a general evolutional cour...Evolution history of the volcano is essential not only to characterize the volcano, but also consider magma genesis beneath the volcano. Most of the stratovolcanoes in northeast Japan follow a general evolutional course: cone building, horse-shoe shaped caldera forming collapse, and post-caldera stages. However, the detailed history of each stage is not well investigated. We investigated evolution history of young edifice of Gassan volcano, representative stratovolcano in rear side of northeast Japan arc. Most of the products are lavas, which are divided into two groups by geomorphologic and geologic features. The former (Gassan lower lavas) is composed of relatively thin and fluidal lavas, whose original geomorphology remains a little, while the latter (Gassan upper lavas) is composed of relatively thick and viscous lavas, whose original geomorphology is moderately preserved. Based on geologic features, the upper lavas can be further divided into Gassan upper north lavas and upper summit lavas in ascending order. After the formation of the thick lavas, horse-shoe shaped caldera was formed by the instability of the edifice, probably triggered by fault activity. No evidence of post caldera activity inner part of it is observed. Based on K-Ar data, estimated age of Gassan lower lavas is ca. 0.75 to ca. 0.6 Ma, those of Gassan upper north and upper summit lavas are ca. 0.60 to ca. 0.55 Ma and ca. 0.55 to ca. 0.45 Ma. The eruption rate is estimated to be ca. 0.0004 km3/1000 years in Gassan lower lavas and ca. 0.02 km3/1000 years in Gassan upper summit lavas. These values are lower than the eruption rate of representative Japanese stratovolcanoes.展开更多
文摘The Tarim Basin in China comprises eight sets of sandstone reservoirs, five of which are investigated in detail in this study. The main purpose of this study is to investigate the hydrocarbon charging histories of reservoirs by applying K-Ar dating of authigenic illites. The ages of authigenic illites from the Lower Silurian bituminous sandstones in the Central Uplift area range from 383.5 to 235.2 Ma, suggesting that the Silurian oil accumulations were formed from the late Caledonian till the late Hercynian. The ages of authigenic illites from the Upper Devonian Donghe Sandstone reservoirs range from 263.8 to 231.3 Ma, indicating that hydrocarbon accumulations within the Donghe sandstone were formed mainly in the late Hercynian. The authigenic illites ages from the Lower Jurassic Yangxia Group sandstones in the Yinan-2 gas reservoir (Yinan-2, Kuqa Depression) range from 28.1 to 23.9 Ma, suggesting that the initial hydrocarbon charging occurred in the Miocene. The ages of the authigenic illites from the Lower Cretaceous sandstones in the Akemomu gas field (Ake-1, Kashi Sag, Southwest Depression) range from 22.6 to 18.8 Ma, indicating a probable early oil accumulation or early migration of hydrocarbon within this area. The illites from the Paleogene sandstones in the Dina-2 gas reservoir (Dina-201, Kuqa Depression) have a detrital origin; they cannot be used to study the hydrocarbon charging histories. The ages of authigenic illites in the underlying Cretaceous sandstones in the same well (Dina-201) range from 25.5 to 15.5 Ma, indicating that hydrocarbon charging in this reservoir probably occurred within the Miocene. This study highlights the potential of applying K-Ar dating of authigenic illites to investigate the timing of hydrocarbon charging histories of the Tarim Basin reservoir sandstones.
基金financially supported by the Vietnam National Foundation for Science and Technology Development(NAFOSTED) under grant number 105.032011.11 to Bui Hoang Bac
文摘Constraining the timing of fault zone formation is fundamentally important in terms of geotectonics to understand structural evolution and brittle fault processes.This paper presents the first authigenic illite K-Ar age data from fault gouge samples collected from the Red River Shear Zone at Lao Cai province,Vietnam.The fault gouge samples were separated into three grain-size fractions(〈0.1 μm,0.1-0.4 μm and 0.4-1.0 μm).The results show that the K-Ar age values decrease from coarser to finer grain fractions(24.1 to 19.2 Ma),suggesting enrichment in finer fraction of morerecently grown authigenic illites.The timing of the fault movement are the lower intercept ages at 0%detrital illite(19.2 ± 0.92 Ma and 19.4 ± 0.49 Ma).In combination with previous geochronological data,this result indicates that the metamorphism of the Day Nui Con Voi(DNCV) metamorphic complex took place before ca.26.8 Ma.At about 26.8 Ma-25 Ma,the fault strongly acted to cause the rapid exhumation of the rocks along the Red River-Ailoa Shan Fault Zone(RR-ASFZ).During brittle deformation,the DNCV slowly uplifted,implying weak movement of the fault.This brittle deformation might have lasted for ca.5 Ma.
文摘In the Ordos basin, two distinct thermal events of different ages have been identified for the first time by means of K-Ar dating combined with illite crystallinity analysis. For the Late Triassic and Late Permian samples, the K-Ar ages of the < 0.2μm fractions (159-173 Ma) reflect an illitization age related to the Yanshanian movement and indicate a short thermal event in the Middle Jurassic; the K-Ar ages of the <2 μm fractions (210-308 Ma) are interpreted as mixed ages of detrital material and authigenic illites. The K-Ar ages of both < 0.2μm and < 2μm fractions of a Middle Cambrian sample (368 Ma and 419 Ma) correspond to the ages of the metamorphism and earliest granite intrusion in the northern Caledonian Qinling fold zone (380-420 Ma) and show a thermal event during Silurian-Devonian time.
基金supported by the National Natural Science Foundation of China(Grant Nos.42241161,41873063)the Geological Survey Project of China Geological Survey(Grant No.DD20221644)+1 种基金the China Postdoctoral Science Foundation(Grant No.2021M703196)the 2021Graduate Innovation Fund Project of China University of Geosciences,Beijing(Grant No.YB2021YC021)。
文摘To accurately determine the chronological framework of climatic variations recorded by various Martian terrains, the absolute ages of Martian events and cratering rate need to be constrained by either in situ dating or returned samples. In situ K-Ar dating is currently a more plausible dating technique as compared with sample return. Jarosite(KFe_(3)[SO_(4)]_(2)[OH]_(6)) is the only confirmed K sulfate mineral that is widely present on Mars, as indicated by in situ detection, orbital remote sensing, and meteorite studies. Jarosite can be used for precise K-Ar and (40)Ar/(39)Ar dating. The preservation of jarosite on Mars provides information about the nature and duration of aqueous processes on the Martian surface. Different ages of Martian jarosite represent the key to constraining the transition from Martian surface water activity to arid climatic conditions. This paper summarizes recent advances in our knowledge of the spatial distribution of Martian jarosite, its mineralogical properties and stability on Mars, the Ar diffusion kinetics of jarosite, and the current status of in situ K-Ar dating. Moreover, we examine the key scientific issues to be addressed for in situ K-Ar dating of jarosite and Martian sample return missions, and discuss future research directions.
基金The Research Fund from Kanazawa University and Grants-in-Aid for Scientific Research from Japanese Society for the promotion of Science(K.Kashiwaya[(A2)20253002])
文摘HDP09 core drilled in Lake Khuvsgul,Mongoria,at 50°52'48 'N,100°26'30' E where the water depth is 222.25 m reached to the depth of ~60 m below lake floor in 2006.The bottom part of the core consists of alkali basalt.This basalt consists of the basement of the lake Khuvsgul based on its bulk chemistry and core position plotted on the seismic profile.K-Ar age of the basalt is(8.5±0.2) Ma,which is concordant with the on-land basalt distributed in the eastern part of the lake,and implies the maximum age of the Lake Khuvsgul formation.
基金This work was jointly supported bythe National Natural Science Foundation of China (Grant Nos. 49873011 and 40073011) the Chinese Ministry of Science and Technology (Grant Nos. G1999075504 and G1999043302).
文摘Two eruption episodes are identified through systematic field investigations and K-Ar dating of the late Mesozoic volcanic rocks in the North Huaiyang belt (NHB), Dabie orogenic belt, of which the earlier volcanic suite termed Maotanchang Fm. (Fm.) occurring at Jinzhai, Xianhualing and Maotanchang, etc., was erupted from 149 Ma to 138 Ma. The other named Xiaotian Fm. mainly distributed at Xiaotian, Shucheng, etc., was formed between 132 Ma and 116 Ma. During the eruption gap of the two volcanic suites deposited a volcano-sedimentary conglomerate layer, which are composed of the multi-compositional gravels, including the North Dabie orthogneiss complex (NDOC), volcanic gravels, etc. These volcanic gravels in the conglomerate layer show identical geochemical and isotopic compositions (87Sr/86Sr(t) =0.7084-0.7092,εNd(t) =-21.8--24.4) to the Maotanchang Fm. volcanic rocks (87Sr/86Sr = 0.7086-0.7102,εNd = -19.2-24.4), but significantly distinct from those of Xiaotian Fm. (87Sr/86Sr = 0.7076-0.7084, εNd=
基金Supported by National Natural Science Foundation of China (Grant Nos. 90714004, 40672131)
文摘Two grabens were developed in the Yi-Shu segment of the Tan-Lu fault zone (TLFZ) during its extensional activities, and are now confined by four major NNE-trending normal faults and filled with Cretaceous sediments. These faults were developed due to their reactivities, containing gouge and cutting the graben sediments. Detailed fieldwork demonstrates that the faults experienced sinistral transtensional moment related to regional NE-SW extension during the reactivity. X-ray diffraction (XRD) analysis of the finest gouge samples gives illite crystallinity values higher than 0.42°Δ2θ, indicating temperatures experienced by the gouge samples were less than 150°C. From the relation between K-Ar data and proportions of detrital illite in different size fractions of the gouge samples, we conclude that refaulting for the western boundary fault of the TLFZ, abbreviated to F4, took place at ca. 90 Ma and for the eastern boundary fault, abbreviated to F1, happened from 70 to 60 Ma. During the two phases of reactivity imposed by the same NE-SW extension, the TLFZ experienced uplifting and no sediments were deposited in the two grabens. It is suggested that the TLFZ experienced extension during the Late Cretaceous, which supports the inference that lithospheric thinning was still undergoing in the east of the North China Craton during the Late Cretaceous magmatic hiatus.
文摘Five Late-Cenozoic olivine basalt samples, taken from 3 young volcanoes (Keluo, Lianhuashan and Qinglongshan) located in the north of Heilongjian Province, were dated by the conventional K-Ar dating method. The apparent ages of whole rock are (0.06±0.01) Ma,( 0.15±0.03) Ma, (0.17±0.02) Ma, (21.10±0.13) Ma and (24.46±0.10) Ma, respectively. In the crushed sample grains (mush number 80-100)olivine(including phynocryst and xenocryst)was picked out under a binocular microscope, then apparent ages obtained are (0.03±0.01) Ma, (0.06±0.01) Ma, (0.07±0.03) Ma, (2.31±0.02) Ma and (1.50±0.21) Ma, respectively. The apparent ages of the olivine-picked out sample are come down (younger)50 to over 90. There are a lot of the Late-Cenozoic volcanic olivine basalt outcropping in eastern China, probably the age-datings of those basalt samples in which olivine grains are unpicked out are older than the true geological ages. The inference and conclusion drawn from those datings should be renewed.
基金the Chinese Academy of Sciences Initiative Program (Grant Nos. KZCX3-SW-145 and KZCX2-SW-133)
文摘Reconstruction of uplift history of the Tibetan Plateau is crucial for understanding its environmental impacts. The Oiyug Basin in southern Tibet contains multiple periods of sedimentary sequences and volcanic rocks that span much of the Cenozoic and has great potential for further studying this issue. However, these strata were poorly dated. This paper presents a chronological study of the 145 m thick and horizontally-distributed lacustrine sequence using paleomagnetic method as well as a K-Ar dating of the underlying volcanic rocks. Based on these dating results, a chronostratigraphic framework and the basin-developmental history have been established for the past 15 Ma, during which three tectonic stages are identified. The period of 15-8.1 Ma is characterized by intense volcanic activities involving at least three major eruptions. Subsequently, the basin came into a tectonically quiescent period and a lacustrine sedimentary sequence was developed. Around 2.5 Ma, an N-S fault occurred across the southern margin of the basin, leading to the disappearance of the lake environment and the development of the Oiyug River. The Gyirong basin on northern slope of the Himalayas shows a similar basin developmental history and thus there is a good agreement in tectonic activities between the Himalayan and Gangdise orogenic belts. Therefore, the tectonic evolution stages experienced by the Oiyug Basin during the past 15 Ma could have a regional significance for southern Tibet. The chronological data obtained from this study may provide some constraints for further studies with regard to the tectonic processes and environmental changes in southern Tibetan Plateau.
文摘Evolution history of the volcano is essential not only to characterize the volcano, but also consider magma genesis beneath the volcano. Most of the stratovolcanoes in northeast Japan follow a general evolutional course: cone building, horse-shoe shaped caldera forming collapse, and post-caldera stages. However, the detailed history of each stage is not well investigated. We investigated evolution history of young edifice of Gassan volcano, representative stratovolcano in rear side of northeast Japan arc. Most of the products are lavas, which are divided into two groups by geomorphologic and geologic features. The former (Gassan lower lavas) is composed of relatively thin and fluidal lavas, whose original geomorphology remains a little, while the latter (Gassan upper lavas) is composed of relatively thick and viscous lavas, whose original geomorphology is moderately preserved. Based on geologic features, the upper lavas can be further divided into Gassan upper north lavas and upper summit lavas in ascending order. After the formation of the thick lavas, horse-shoe shaped caldera was formed by the instability of the edifice, probably triggered by fault activity. No evidence of post caldera activity inner part of it is observed. Based on K-Ar data, estimated age of Gassan lower lavas is ca. 0.75 to ca. 0.6 Ma, those of Gassan upper north and upper summit lavas are ca. 0.60 to ca. 0.55 Ma and ca. 0.55 to ca. 0.45 Ma. The eruption rate is estimated to be ca. 0.0004 km3/1000 years in Gassan lower lavas and ca. 0.02 km3/1000 years in Gassan upper summit lavas. These values are lower than the eruption rate of representative Japanese stratovolcanoes.