期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Spatiotemporal variations of maximum seasonal freeze depth in 1950s–2007 over the Heihe River Basin, Northwest China 被引量:3
1
作者 QingFeng Wang TingJun Zhang 《Research in Cold and Arid Regions》 CSCD 2014年第3期209-218,共10页
Investigation on spatiotemporal variations of maximum seasonal freeze depth (MSFD) over the Heihe River Basin is of great importance for systematic understanding of regional climate and environmental change, ecologi... Investigation on spatiotemporal variations of maximum seasonal freeze depth (MSFD) over the Heihe River Basin is of great importance for systematic understanding of regional climate and environmental change, ecological-hydrological processes, water resources assessment, construction and resource development. Based on soil and air temperatures at the meteorological stations of the China Meteorological Administration (CMA) over the Heihe River Basin, MSFDs time series are structured into a composite time series over the 1960-2007 period. Evaluating the averaged MSFD time series for 1960 2007 reveals a statistically significant trend of 4.0 cm/decade or a net change of-19.2 cm for the 48-year period over the basin. The MSFD had significantly negative correlation with mean annual air temperature (MAAT), winter air temperature, mean annual ground surface temperature (MAGST), degree days of thawing for the air (DDTa) as well as for the surface (DDTs), and degree days of freezing for the surface (DDFs). While there was significantly positive correlation between DDF,. and MSFD time series, MSFD was deeper and changed greatly in the Heihe River source area. It was shallower in the east-central basin and gradually deepened in other sections of the basin. The MSFD distribution pattern in 2003-2005 is consistent with that of averaged degree days of freezing for air (DDFa) in 1960-2007. However, the maximum of MSFD may not be accurate, because there is no long term observation data in the deep seasonally frozen ground regions near the lower boundary of permafrost. With increasing elevation, averaged DDFa increased at a rate of 51.6 ℃-day/100m, therefore, the MSFG and the date reaching MSFG became deeper and later, respectively. 展开更多
关键词 spatiotemporal variations MSFD potential driving variables seasonally frozen ground Heihe River Basin
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部