Interlinked positive feedback loops,an important building block of biochemical systems,can induce bistable switching,leading to long-lasting state changes by brief stimuli.In this work,prevalent mutual activation betw...Interlinked positive feedback loops,an important building block of biochemical systems,can induce bistable switching,leading to long-lasting state changes by brief stimuli.In this work,prevalent mutual activation between two species as another positive feedback is added to a generic interlinked positive-feedback-loop model originating from many realistic biological circuits.A stochastic fluctuation of the positive feedback strength is introduced in a bistable interval of the feedback strength,and bistability appears for the moderate feedback strength at a certain noise level.Stability analysis based on the potential energy landscape is further utilized to explore the noise-induced switching behavior of two stable steady states.展开更多
The degradation process of organosol coated tinplate in beverage was investigated by electrochemical noise (EN) technique combined with morphology characterization.EN data were analyzed using phase space reconstructio...The degradation process of organosol coated tinplate in beverage was investigated by electrochemical noise (EN) technique combined with morphology characterization.EN data were analyzed using phase space reconstruction theory.With the correlation dimensions obtained from the phase space reconstruction,the chaotic behavior of EN was quantitatively evaluated.The results show that both electrochemical potential noise (EPN) and electrochemical current noise (ECN) have chaotic properties.The correlation dimensions of EPN increase with corrosion extent,while those of ECN seem nearly unchanged.The increased correlation dimensions of EPN during the degradation process are associated with the increased susceptibility to local corrosion.展开更多
基金supported by the National Natural Science Foundation of China(Grants 11372017,11272024,and 11371046)the General Research Program of Science and Technology at Universities of Inner Mongolia Autonomous Region(Grant NJZY14130)
文摘Interlinked positive feedback loops,an important building block of biochemical systems,can induce bistable switching,leading to long-lasting state changes by brief stimuli.In this work,prevalent mutual activation between two species as another positive feedback is added to a generic interlinked positive-feedback-loop model originating from many realistic biological circuits.A stochastic fluctuation of the positive feedback strength is introduced in a bistable interval of the feedback strength,and bistability appears for the moderate feedback strength at a certain noise level.Stability analysis based on the potential energy landscape is further utilized to explore the noise-induced switching behavior of two stable steady states.
基金Supported by Major State Basic Research Program of China ("973" Program,No. 2011CB610505)Specialized Research Fund for the Doctoral Program of Higher Education (No. 20120032110029)
文摘The degradation process of organosol coated tinplate in beverage was investigated by electrochemical noise (EN) technique combined with morphology characterization.EN data were analyzed using phase space reconstruction theory.With the correlation dimensions obtained from the phase space reconstruction,the chaotic behavior of EN was quantitatively evaluated.The results show that both electrochemical potential noise (EPN) and electrochemical current noise (ECN) have chaotic properties.The correlation dimensions of EPN increase with corrosion extent,while those of ECN seem nearly unchanged.The increased correlation dimensions of EPN during the degradation process are associated with the increased susceptibility to local corrosion.