期刊文献+
共找到15,864篇文章
< 1 2 250 >
每页显示 20 50 100
A study of the soil water potential threshold values to trigger irrigation of ‘Shimizu Hakuto’ peach at pivotal fruit developmental stages
1
作者 Yusui Lou Yuepeng Han +4 位作者 Yubin Miao Hongquan Shang Zhongwei Lv Lei Wang Shiping Wang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期376-386,共11页
Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established man... Water management is an important practice that affects fruit size and quality.Effective implementation of irrigation scheduling requires knowledge of the appropriate indicators and thresholds,which are established manly based on the effects of water deficits on final fruit quality.Few studies have focused on the real-time effects of water status on fruit and shoot growth.To establish soil water potential (ψ_(soil)) thresholds to trigger irrigation of peach at pivotal fruit developmental stages,photogrammetry,^(13)C labelling,and other techniques were used in this study to investigate real-time changes in stem diameter,fruit projected area,net leaf photosynthetic rate (P_(n)),and allocation of photoassimilates to fruit under soil water potential conditions ranging from saturation to stress in 6-year-old Shimizu hakuto’peach.Stem growth,fruit growth,and P_n exhibited gradually decreasing sensitivity to water deficits during fruit developmental stages I,II,and III.Stem diameter growth was significantly inhibited whenψ_(soil)dropped to-8.5,-7.6,and-5.4 k Pa,respectively.Fruit growth rate was low,reaching zero when theψ_(soil)was-9.0 to-23.1,-14.9 to-21.4,and-16.5 to-23.3 k Pa,respectively,and P_ndecreased significantly when theψ_(soil)reached-24.2,-22.7,and-20.4 kPa,respectively.In addition,more photoassimilates were allocated to fruit under moderateψ_(soil)conditions (-10.1 to-17.0 k Pa) than under otherψ_(soil)values.Our results revealed threeψ_(soil)thresholds,-10.0,-15.0,and-15.0 kPa,suitable for triggering irrigation during stages I,II,and III,respectively.These thresholds can be helpful for controlling excessive tree vigor,maintaining rapid fruit growth and leaf photosynthesis,and promoting the allocation of more photoassimilates to fruit. 展开更多
关键词 PEACH Soil water potential Irrigation threshold Fruit expansion PHOTOSYNTHESIS
下载PDF
Minimization of Air Consumption and Potential Savings of Textile Denim Fabric Manufacturing Process
2
作者 Md. Enamul Haque Md. Bokthier Rahman +2 位作者 Waliul Kafi Md. Suja Uddin Kaiser Abhijit Dey 《Journal of Textile Science and Technology》 2023年第1期69-83,共15页
One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Banglad... One of the most important aspects of Bangladesh’s textile industry is denim. Bangladesh now has a new opportunity thanks to the global demand for denim among fashion industry professionals. Entrepreneurs from Bangladesh provide denim products to well-known international merchants all over the world. The worldwide denim market is predicted to expand by roughly 8% through the year 2020. We must raise the standard of denim if we are to keep up with the expanding industry. In contrast to projectile and rapier systems, air-jet weaving machines nowadays can weave practically all types of yarns without any issues and at higher rates. Due to this, air-jet looms are an excellent substitute for other weft insertion techniques. This kind of device still has one significant flaw, though, and that is the enormous power consumption brought on by the creation of compressed air. Researchers and manufacturers of air-jet looms have therefore worked very hard to find a solution to this issue and achieve a huge reduction in air consumption without compromising loom performance or fabric quality. Therefore, the purpose of this project is to look into ways to decrease air consumption and reduce auxiliary selvedge waste without any decrease in loom performance and fabric quality on existing air-jet weaving looms which reduce the manufacturing costs with process improvement. Just updating the air pressure allowed a weaving mill to reduce air usage by 11 cfm. So, with just almost no cost, a company with 100 looms could save $0.15 M each year, on compressed air. Two new methods for decreasing process costs on air jet looms have also been developed by this project work. 展开更多
关键词 DENIM Woven Textiles Weaving Machine Air Consumption Cost Reduction Waste Reduction potential savings
下载PDF
Identification of Groundwater Potential Zones in Samendeni Watershed in Sedimentary and Semi-Arid Contexts of Burkina Faso, Using Analytic Hierarchy Process (AHP) Method and GIS
3
作者 Sadraki Yabre Youssouf Koussoubé +2 位作者 Sauret Élie Serge Gaëtan Nicaise Yalo Stephen Silliman 《American Journal of Climate Change》 2023年第1期172-203,共32页
Demand for water increases in Samendeni regarding the undertaken agricultural projects while pressure on surface water from global warming/evapotranspiration also increases. Thus, the need to evaluate the groundwater ... Demand for water increases in Samendeni regarding the undertaken agricultural projects while pressure on surface water from global warming/evapotranspiration also increases. Thus, the need to evaluate the groundwater potential in the catchment is crucial as alternative supplier of water and resilience to climate hazards. The AHP was performed integrating ten influencing factors such as geomorphology, geology, soil, land use/land cover (lulc), slope, rainfall, drainage density, borehole rate & depth and piezometric level to generate groundwater potential zones (GWPZs) in Samendeni watershed (4420 km<sup>2</sup>). All the factors were processed and ranged into five (5) classes. Weight was assigned to each class of thematic layer. These thematic layers were then reclassified based on the normalized weight to be used in the calculation of groundwater potential zones (GWPZ). The final output, groundwater potential map, revealed a significant groundwater potential with very good (11%), good (31%), moderate (30%), poor (20%), and very poor (8%) of proportion. The interesting (very good, good) GWPZs in the study area are mostly in the central towards the east. The poor zones in term of groundwater potential are concentrated in the upper west region of the watershed. Besides the cross-validation with the relationship between different groundwater potential zones and the wells available in the study area, the overall accuracy was estimated to 88% provided from the result of the similarity analysis where 22 out of the 25 validation wells match with the expected yield classes of GWPZs. The statistics from that validation revealed the performance of AHP method to delineate groundwater potential zones at catchment level. 展开更多
关键词 Climate Change Resilience Groundwater potential water Management Conjunctive Use AHP GIS Samendeni watershed
下载PDF
Using geospatial technologies to delineate Ground Water Potential Zones(GWPZ)in Mberengwa and Zvishavane District,Zimbabwe
4
作者 Nyasha Ashleigh Siziba Pepukai Chifamba 《Journal of Groundwater Science and Engineering》 2023年第4期317-332,共16页
The main objective of the study was to delineate Ground Water Potential Zones(GWPZ)in Mberengwa and Zvishavane districts,Zimbabwe,utilizing geospatial technologies and thematic mapping.Various factors,including geolog... The main objective of the study was to delineate Ground Water Potential Zones(GWPZ)in Mberengwa and Zvishavane districts,Zimbabwe,utilizing geospatial technologies and thematic mapping.Various factors,including geology,soil,rainfall,land use/land cover,drainage density,lineament density,slope,Terrain Ruggedness Index(TRI),and Terrain Wetness Index(TWI),were incorporated as thematic layers.The Multi Influencing Factor(MIF)and Analytical Hierarchical Process(AHP)techniques were employed to assign appropriate weights to these layers based on their relative significance,prioritizing GWPZ mapping.The integration of these weighted layers resulted in the generation of five GWPZ classes:Very high,high,moderate,low,and very low.The MIF method identified 3%of the area as having very high GWPZ,19%as having high GWPZ,40%as having moderate GWPZ,24%as having low GWPZ,and 14%as having very low GWPZ.The AHP method yielded 2%for very high GWPZ,14%for high GWPZ,37%for moderate GWPZ,37%for low GWPZ,and 10%for very low GWPZ.A strong correlation(ρof 0.91)was observed between the MIF results and groundwater yield.The study successfully identified regions with abundant groundwater,providing valuable target areas for groundwater exploitation and highvolume water harvesting initiatives.Accurate identification of these crucial regions is essential for effective decision-making,planning,and management of groundwater resources to alleviate water shortages. 展开更多
关键词 Groundwater resources Analytical Hierarchical Process Multi Influence Factor Lineaments density Terrain Wetness Index Ground water potential Zone
下载PDF
Water-saving Potential in aeolian sand soil under straight tube and surface drip irrigation in Taklimakan Desert in Northwest China 被引量:6
5
作者 ZhongWen Bao HuLin Du XiaoJun Jin 《Research in Cold and Arid Regions》 2011年第3期243-251,共9页
Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this ineff... Evaporation loss from the saturated soil beneath drip irrigation emitters highly influences the irrigation efficiency of drip krigation (D1]. Subsurface drip irrigation (SDI) is one good approach to curb this inefficiency, but in a new irrigation method, straight tube irrigation (STI), the irrigation tubes do not need to be buried and thus STI is recommended to increase the irrigation efficiency under normal surface-applied DI. STI consists of only connectors and water-transference tubes that can directly transfer irrigation water from the lateral emitters in the drip line to the root zone of plants. Five-month field experiments were carried out in aeolian sand soil in the forest-belts of the Taklimakan Desert, which have poor water storage capacity, to compare the potential water saving between STI and DI. The preliminary results showed that, compared with DI, STI (1) improved the soil water content in soil depths from 40 to 100 cm under the soil surface; (2) achieved the same irrigation effects in relatively shorter irrigation durations; (3) had very little water loss due to deep seepage; and (4) formed a layer of dry sand about 10 to 30 cm thick immediately below the soil surface, which lessened evaporation loss of soil water beneath the emitters on the soil surface. This demonstrates that STI can maximize the water-saving potential of DI through the reduction of wetted soil perimeters on the soil surface. This is valuable information for water-saving engineering applications and projects with STI in arid and semiarid regions. 展开更多
关键词 potential water saving evaporation loss straight tube irrigation drip irrigation EFFICIENCY Taklimakan Desert
下载PDF
The water-saving potential of using micro-sprinkling irrigation for winter wheat production on the North China Plain 被引量:6
6
作者 ZHAI Li-chao LU Li-hua +4 位作者 DONG Zhi-qiang ZHANG Li-hua ZHANG Jing-ting JIA Xiu-ling ZHANG Zheng-bin 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第6期1687-1700,共14页
The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving ... The shortage of groundwater resources is a considerable challenge for winter wheat production on the North China Plain.Water-saving technologies and procedures are thus urgently required.To determine the water-saving potential of using micro-sprinkling irrigation(MSI)for winter wheat production,field experiments were conducted from 2012 to 2015.Compared to traditional flooding irrigation(TFI),micro-sprinkling thrice with 90 mm water(MSI1)and micro-sprinkling four times with 120 mm water(MSI2)increased the water use efficiency by 22.5 and 16.2%,respectively,while reducing evapotranspiration by 17.6 and 10.8%.Regardless of the rainfall pattern,MSI(i.e.,MSI1 or MSI2)either stabilized or significantly increased the grain yield,while reducing irrigation water volumes by 20–40%,compared to TFI.Applying the same volumes of irrigation water,MSI(i.e.,MSI3,micro-sprinkling five times with 150 mm water)increased the grain yield and water use efficiency of winter wheat by 4.6 and 11.7%,respectively,compared to TFI.Because MSI could supply irrigation water more frequently in smaller amounts each time,it reduced soil layer compaction,and may have also resulted in a soil water deficit that promoted the spread of roots into the deep soil layer,which is beneficial to photosynthetic production in the critical period.In conclusion,MSI1 or MSI2 either stabilized or significantly increased grain yield while reducing irrigation water volumes by 20–40%compared to TFI,and should provide water-saving technological support in winter wheat production for smallholders on the North China Plain. 展开更多
关键词 winter wheat grain yield water use efficiency micro-sprinkling irrigation traditional flooding irrigation water-saving potential
下载PDF
THE BALANCE BETWEEN SUPPLY AND DEMAND OF WATER RESOURCES AND THE WATER-SAVING POTENTIAL FOR AGRICULTURE IN THE HEXI CORRIDOR 被引量:9
7
作者 GAOQian-zhao DUHu-lin 《Chinese Geographical Science》 SCIE CSCD 2002年第1期23-29,共7页
The Hexi Corridor is an important base of agriculture development in Northwest China. According to recent statistics, there are 65.94×108m3 of water resources available in the Hexi Corridor. At present, net consu... The Hexi Corridor is an important base of agriculture development in Northwest China. According to recent statistics, there are 65.94×108m3 of water resources available in the Hexi Corridor. At present, net consumption in development and utilization is 43.33×108m3. Water supply and demand reach a balance on the recent level of production, but loss of evaporation and evapotranspiration is as much as 25.69×108m3. So net use efficiency of water resources is 59%. Based on analyzing balance between water and land considering ecological environment at present, there exists the serious water shortage in the Shiyang River system where irrigation lands have overloaded. There is a comparative balance between supply and demand of water resource in the Heihe River system; and the Sule River system has some surplus water to extend irrigation land. Use of agriculture water accounts for 83.3% and ecological forest and grass for 6.9%. The Hexi Corridor still has a great potential for water saving in agriculture production. Water saving efficiency of irrigation is about 10% by using such traditional technologies as furrow and border dike irrigation and small check irrigation, and water saving with plastic film cover and techniques of advanced sprinkler and drip/micro irrigation etc. can save more than 60% of irrigated water. Incremental irrigation area for water saving potential in the Hexi Corridor has been estimated as 56%-197% to original irrigation area. So the second water sources can be developed from water saving agriculture in the Hexi Corridor under Development of the Western Part of China in large scale. This potential can be realized step by step through developing the water saving measures, improving the ecological condition of oasis agriculture, and optimizing allocation of water resources in three river systems. 展开更多
关键词 水资源 供需平衡 蓄水势能 农业 河西走廊地区 甘肃
下载PDF
Development Potentials and Benefit Analysis of Efficient Water-saving Irrigation in Lixin County 被引量:2
8
作者 Cheng CAO 《Asian Agricultural Research》 2013年第8期28-31,34,共5页
On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide refe... On the basis of analyzing water resources,crop planning structure,and irrigation mode in Lixin County,potentials and benefits of developing efficient water-saving irrigation in the county were explored to provide references for its future water-saving irrigation. 展开更多
关键词 EFFICIENT water-saving IRRIGATION potential Benefi
下载PDF
The Potential Contribution of Subsurface Drip Irrigation to Water-Saving Agriculture in the Western USA 被引量:18
9
作者 T L Thompson PANG Huan-cheng LI Yu-yi 《Agricultural Sciences in China》 CSCD 2009年第7期850-854,共5页
Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurfa... Water shortages within the western USA are resulting in the adoption of water-saving agricultural practices within this region. Among the many possible methods for saving water in agriculture, the adoption of subsurface drip irrigation (SDI) provides a potential solution to the problem of low water use efficiency. Other advantages of SDI include reduced NO3 leaching compared to surface irrigation, higher yields, a dry soil surface for improved weed control, better crop health, and harvest flexibility for many specialty crops. The use of SDI also allows the virtual elimination of crop water stress, the ability to apply water and nutrients to the most active part of the root zone, protection of drip lines from damage due to cultivation and tillage, and the ability to irrigate with wastewater while preventing human contact. Yet, SDI is used only on a minority of cropland in the arid western USA. Reasons for the limited adoption of SDI include the high initial capital investment required, the need for intensive management, and the urbanization that is rapidly consuming farmland in parts of the western USA. The contributions of SDI to increasing yield, quality, and water use efficiency have been demonstrated. The two major barriers to SDI sustainability in arid regions are economics (i.e., paying for the SDI system), including the high cost of installation; and salt accumulation, which requires periodic leaching, specialized tillage methods, or transplanting of seedlings rather than direct-seeding. We will review advances in irrigation management with SDI. 展开更多
关键词 subsurface drip irrigation (SDI) water-saving agriculture western USA
下载PDF
Water-saving potential evaluation of water-receiving regions in Shandong province on the East Route of the South-to-North Water Transfer Project of China
10
作者 YIN Xiao-lin GAO Yuan-yuan +1 位作者 WU Hai-ping ZHAO Xue-ming 《Journal of Groundwater Science and Engineering》 2020年第3期287-297,共11页
Taking 13 water-receiving areas on the East Route of the South-to-North Water Diversion Project(ERSNWDP)in Shandong Province as the study area,and comparing it with Jiangsu Province on the ERSNWDP and the Middle Route... Taking 13 water-receiving areas on the East Route of the South-to-North Water Diversion Project(ERSNWDP)in Shandong Province as the study area,and comparing it with Jiangsu Province on the ERSNWDP and the Middle Route of the South-to-North(MRSNWDP),the current water-saving potential of the water-receiving areas within the municipalities of Shandong was analyzed.Different water-saving scenarios were constructed and analyzed with key water-saving indexes in various industries.These indexes include the effective utilization coefficient of farmland irrigation water,total water consumption of industrial sectors with an added value of over 10000 RMB,average leakage rate of the urban public water supply pipe network and the penetration rate of water-saving appliances.Based on the scenarios,comprehensive water-saving potential of the 13 water-receiving area cities was calculated.The results show that the water-saving potential of the study area is at a relative high level.However,some cities still have a certain amount of water-saving potential for agriculture and industry to be elevated.Under the recommended water-saving scenario,the water-saving potential is 1.134 billion m3,accounting for 5.33%of the current total water consumption,of which 460 million m3 is in agriculture,600 million m3 in industry,is and 74.20 million m3 in urban domestic sector.Comprehensive water-saving measures for the study area were proposed from the aspects of agricultural,industrial and domestic water uses.Agricultural and industrial water saving are more significant.The major cities for agricultural water saving include Jining City,Heze City,Weifang City and Jinan City;the focus cities of industrial water saving mainly include Weihai City,Jining City and Qingdao City and etc.;the key water-saving areas for urban use mainly include Zaozhuang City,Jining City and Heze City. 展开更多
关键词 East Route of South-to-North water Diversion Project Shandong water receiving area water-saving level water-saving potential
下载PDF
Agricultural water-saving potential and feasibility of developing semi-dryland farming in Henan Province
11
作者 Huang Xiuqiao Wang Jinglei 《Engineering Sciences》 EI 2013年第5期61-69,共9页
Based on the collected data in the current status of developing and utilizing water resources and implementing water-saving agriculture in Henan Province,and taking into account the influence of engineering,agronomic ... Based on the collected data in the current status of developing and utilizing water resources and implementing water-saving agriculture in Henan Province,and taking into account the influence of engineering,agronomic and management measures,the water- saving potential in past years and the feasibility of implementing semi-dryland farming were analyzed in Henan Province. Finally,specific technical measures of developing semidryland farming in different areas of Henan Province were proposed. 展开更多
关键词 旱地农业 节水潜力 河南省 开发利用 节水农业 数据采集 水资源 农艺
下载PDF
Extreme Cold Events in North America and Eurasia in November-December 2022: A Potential Vorticity Gradient Perspective 被引量:3
12
作者 Yao YAO Wenqin ZHUO +8 位作者 Zhaohui GONG Binhe LUO Dehai LUO Fei ZHENG Linhao ZHONG Fei HUANG Shuangmei MA Congwen ZHU Tianjun ZHOU 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第6期953-962,I0002-I0005,共14页
From 17 November to 27 December 2022, extremely cold snowstorms frequently swept across North America and Eurasia. Diagnostic analysis reveals that these extreme cold events were closely related to the establishment o... From 17 November to 27 December 2022, extremely cold snowstorms frequently swept across North America and Eurasia. Diagnostic analysis reveals that these extreme cold events were closely related to the establishment of blocking circulations. Alaska Blocking(AB) and subsequent Ural Blocking(UB) episodes are linked to the phase transition of the North Atlantic Oscillation(NAO) and represent the main atmospheric regimes in the Northern Hemisphere. The downstream dispersion and propagation of Rossby wave packets from Alaska to East Asia provide a large-scale connection between AB and UB episodes. Based on the nonlinear multi-scale interaction(NMI) model, we found that the meridional potential vorticity gradient(PVy) in November and December of 2022 was anomalously weak in the mid-high latitudes from North America to Eurasia and provided a favorable background for the prolonged maintenance of UB and AB events and the generation of associated severe extreme snowstorms. However, the difference in the UB in terms of its persistence,location, and strength between November and December is related to the positive(negative) NAO in November(December). During the La Ni?a winter of 2022, the UB and AB events are related to the downward propagation of stratospheric anomalies, in addition to contributions by La Ni?a and low Arctic sea ice concentrations as they pertain to reducing PVyin mid-latitudes. 展开更多
关键词 successive cold extremes atmospheric blocking NAO potential vorticity gradient water vapor backward tracking Arctic sea ice La Niña
下载PDF
Analysis on the daily courses of water potential of nine woody species from Cerrado vegetation during wet season 被引量:5
13
作者 张文辉 马瑞萍 《Journal of Forestry Research》 CAS CSCD 2000年第1期7-12,共6页
The water potential (Ψ) daily courses of 9 woody species from Cerrado vegetation in different weather conditions during wet season were observed and analyzed. The adjusting strategies of 9 species could be divided in... The water potential (Ψ) daily courses of 9 woody species from Cerrado vegetation in different weather conditions during wet season were observed and analyzed. The adjusting strategies of 9 species could be divided into 3 groups according to Cluster Analysis and based on the data observed on the January 18, March 20 and April 6. The Ψ values of the first group, which included 2 species, were maintained at the higher level consistently. The Ψ values of the second group, which included 5 species, were intermediate level. The Ψ values of the third group, which included 2 species, were kept in the lower level. The Ψ values of all species always kept pace with the weather condition, especially water condition. During the clear day only one Ψ value peak for all species occurred at midday (12∶30–13∶30). When the overcast or raining occurred for a short period, the fluctuation of Ψ values would appear after about 15–30 min responding to the change of weather condition. Even in the same group under the same external circumstance, there was a clear variation of the leaf Ψ values among different species, which showed that the strategy diversity for plant to balance water relation. From January to April, the Ψ values of 9 species reduced in response to the drought condition. The species with the lower values of water saturation deficiency at turgid loss point (W sdtlp) the osmotic potential at saturation (πsat), the osmotic potential at turgid lose point (πtip) or lower predawn water potential (Ψpd) usually had the lower Ψ values at midday. The mechanism of water balance controlled by many systems has been assumed. 展开更多
关键词 Wet season water balance strategy Osmotic potential water potential Woody species
下载PDF
A drought resistance index to select drought resistant plant species based on leaf water potential measurements 被引量:4
14
作者 SayedJamaleddin KHAJEDDIN SayedHamid MATINKHAH Zahra JAFARI 《Journal of Arid Land》 SCIE CSCD 2019年第4期623-635,共13页
The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in ari... The water deficit in arid and semi-arid regions is the primary limiting factor for the development of urban greenery and forestation. In addition, planting the species that consume low levels of water is useful in arid and semi-arid regions that have poor water management measures. Leaf water potential(Ψ) is a physiological parameter that can be used to identify drought resistance in various species. Indeed, Ψ is one of the most important properties of a plant that can be measured using a pressure chamber. Drought avoiding or drought resistant species have a lower Ψ than plants that use normal or high levels of water. To determine drought resistance of species that are suitable for afforestation in arid urban regions, we evaluated twenty woody species in the Isfahan City, central Iran. The experimental design was random split-split plots with five replications. The species were planted outdoor in plastic pots and then subjected to treatments that consisted of two soil types and five drip irrigation regimes. To evaluate the resistance of each species to drought, we used the Ψ and the number of survived plants to obtain the drought resistance index(DRI). Then, cluster analysis, dendrogram, and similarity index were used to group the species using DRI. Result indicates that the evaluated species were classified into five groups:(1) high water consuming species(DRI>–60 MPa);(2) above normal water consuming species(–60 MPa≥DRI>–90 MPa);(3) normal water consuming species(–90 MPa≥DRI>–120 MPa);(4) semi-drought resistant species(–120 MPa≥DRI>–150 MPa);and(5) drought resistant species(DRI≤–150 MPa). According to the DRI, Salix babylonica L., Populus alba L., and P. nigra L. are high water consuming species, Platanus orientalis L. and Albizia julibrissin Benth are normal water consuming species, and Quercus infectoria Oliv. and Olea europaea L. can be considered as drought resistant species. 展开更多
关键词 DROUGHT RESISTANT species DROUGHT resistance index forestation leaf water potential water DEFICIT
下载PDF
Alterations of Panicle Antioxidant Metabolism and Carbohydrate Content and Pistil Water Potential Involved in Spikelet Sterility in Rice under Water-Deficit Stress 被引量:4
15
作者 Fu Guan-fu SONG Jian +3 位作者 LI Yu-rong YUE Ming-kai XIONG Jie TAO Long-xing 《Rice science》 SCIE 2010年第4期303-310,共8页
Two rice genotypes with different drought tolerance, namely Jin 23B (drought tolerant) and Zhenshan 97B (drought sensitive), were used to study the antioxidant enzyme activities, soluble sugar and starch contents ... Two rice genotypes with different drought tolerance, namely Jin 23B (drought tolerant) and Zhenshan 97B (drought sensitive), were used to study the antioxidant enzyme activities, soluble sugar and starch contents in spikelets, pistil water potential and pollen number on a stigma under water-deficit stress at the flowering stage, which were involved in the spikelet sterility. Compared with respective controls, drought stress induced more serious decreases of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) activities and more significant increase of malonaldehyde (MDA) content in spikekets of Zhenshan 97B than in Jin 23B on 9 and 12 days after water stress (DAWS). The soluble sugar and starch contents increased significantly in spikelets of Jin 23B, but decreased significantly in spikelets of Zhenshan 97B during 9-12 DAWS. The pistil maintained higher water potential in Jin 23B than in Zhenshan 97B during 3-6 DAWS and 9-12 DAWS. In addition, water stress induced more significant decrease in the pollen number on a stigma as well as the percentage of unfilled grains in Zhenshan 97B than in Jin 23B. Thus, it is suggested that water stress induced spikelet sterility by damaging antioxidant enzyme activities, reducing carbohydrate content in spikelets and decreasing pistil water potential at the flowering stage in rice. 展开更多
关键词 antioxidant enzyme carbohydrate content flowering stage pistil water potential RICE water stress spikelet sterility
下载PDF
Influence of water potential and soil type on conventional japonica super rice yield and soil enzyme activities 被引量:5
16
作者 ZHANG Jing WANG Hai-bin +6 位作者 LIU Juan CHEN Hao DU Yan-xiu LI Jun-zhou SUN Hong-zheng PENG Ting ZHAO Quan-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2017年第5期1044-1052,共9页
We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 ... We carried out a pool culture experiment to determine the optimal water treatment depth in loam and clay soils during the late growth stage of super rice. Three controlled water depth treatments of 0-5, 0-10 and 0-15 cm below the soil surface were established using alternate wetting and drying irrigation, and the soil water potential (0 to -25 kPa) was measured at 5, 10 and 15 cm. A 2-cm water layer was used as the control. We measured soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and rice yield. The results showed that the 0-5-cm water depth treatment significantly increased root antioxidant enzyme activities in loam soil compared with the control, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield did not differ from those of the control. The 0-10- and 0-15-cm water depth treatments also increased root antioxidant enzyme activities, whereas soil enzyme activities, chlorophyll fluorescence parameters and yield decreased. In clay soil, the soil enzyme activities, root antioxidant enzyme activities, chlorophyll fluorescence parameters, and yield did not change with the 0-5-cm water treatment, whereas the 0-10- and 0-15-cm water treatments improved these parameters. Therefore,the appropriate depths for soil water during the late growth period of rice with a 0 to -25 kPa water potential were 5 cm in loam and 15 cm in clay soil. 展开更多
关键词 RICE yield components soil type soil enzyme activity antioxidant enzyme activity chlorophyll fluorescence parameters water potential
下载PDF
Relation between soil matrix potential changes and water conversion ratios during methane hydrate formation processes in loess 被引量:1
17
作者 Peng Zhang Qingbai Wu Guanli Jiang Yibin Pu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2011年第2期140-144,共5页
关键词 hydrate formation non-saturated loess matrix potential water conversion ratio
下载PDF
Spatial and temporal variability of soil water in drylands:plant water potential as a diagnostic tool 被引量:1
18
作者 Maik VESTE Markus STAUDINGER Manfred KüPPERS 《Forestry Studies in China》 CAS 2008年第2期74-80,共7页
Arid and semi-arid regions are characterized by low rainfall and high potential evaporative demand. Here, water is the major limiting factor for plant growth and productivity. Soil and surface hydrology properties (e... Arid and semi-arid regions are characterized by low rainfall and high potential evaporative demand. Here, water is the major limiting factor for plant growth and productivity. Soil and surface hydrology properties (e.g. field capacity, infikration rates) effectively control the water re-distribution in the ecosystem, a fact that is aggravated in arid environments. Information of the spatial and temporal accessibility of soil water in desert ecosystems is limited. The purpose of the studies is the application of plant water potential to estimate the spatial and temporal variations of soil water availability in different arid ecosystems of the Negev (Israel) and southern Morocco. As model plants the evergreen shrubs Retama raetam, Thymelaea hirsuta and trees (Acacia tortilis) were chosen. Seasonal and spatial variations of the pre-dawn water potential (ψpd) were examined as diagnostic tool to determine water availability on the landscape level. The seasonal differences in the pre-dawn water potential were less pronounced on the dune compared to the interdune. This showed a better water availability on the dune slope. Also in the investigated wadis systems spatial differences of the water potential could be detected and related to the vegetation pattern. 展开更多
关键词 soil water PATTERN predawn potential deserts Nizzana NEGEV
下载PDF
Phosphorus in Interstitial Water Induced by Redox Potential in Sediment of Dianchi Lake,China 被引量:34
19
作者 LI Qing-Man ZHANG Wen +3 位作者 WANG Xing-Xiang ZHOU Yi-Yong YANG Hao JI Guo-Liang 《Pedosphere》 SCIE CAS CSCD 2007年第6期739-746,共8页
The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads,such as soluble reactive phosphorus(SRP)and total phosphorus(TP),as well as the main elements of s... The sediment redox potential was raised in the laboratory to estimate reduction of internal available phosphorus loads,such as soluble reactive phosphorus(SRP)and total phosphorus(TP),as well as the main elements of sediment extracts in Dianchi Lake.Several strongly reducing substances in sediments,which mainly originated from anaerobic decomposition of primary producer residues,were responsible for the lower redox potential.In a range of -400 to 200 mV raising the redox potential of sediments decreased TP and SRP in interstitial water.Redox potentials exceeding 320 mV caused increases in TP,whereas SRP maintained a relatively constant minimum level.The concentrations of Al,Fe, Ca^(2+),Mg^(2+),K^+,Na^+ and S in interstitial water were also related to the redox potential of sediments,suggesting that the mechanism for redox potential to regulate the concentration of phosphorus in interstitial water was complex. 展开更多
关键词 中国 滇池 磷含量 氧化还原作用 沉积物
下载PDF
Potentially toxic metal concentration,spatial distribution,and health risk assessment in drinking groundwater resources of southeast Iran 被引量:1
20
作者 Hadi Eslami Abbas Esmaeili +4 位作者 Mohsen Razaeian Mahnaz Salari Abdolreza Nassab Hosseini Mohammad Mobini Ali Barani 《Geoscience Frontiers》 SCIE CAS CSCD 2022年第1期127-137,共11页
In this study, the concentration and spatial distribution of potentially toxic metals(PTMs), including arsenic(As), cadmium(Cd), chromium(Cr), lead(Pb), copper(Cu), iron(Fe), manganese(Mn), and magnesium(Mg) in 23 wel... In this study, the concentration and spatial distribution of potentially toxic metals(PTMs), including arsenic(As), cadmium(Cd), chromium(Cr), lead(Pb), copper(Cu), iron(Fe), manganese(Mn), and magnesium(Mg) in 23 wells and drinking groundwater distribution networks of Rafsanjan, located in southeast Iran were evaluated. Moreover, the assessment of carcinogenic and non-carcinogenic risks was estimated by Monte Carlo simulation(MCS). The results showed that the concentrations of As and Pb in more than 99% and 23.46% of the study area, respectively, were higher than the maximum concentration level(10 μg/L). The mean concentration of other metals, including Cd, Cr, Cu, Fe, Mg, and Mn in all drinking water resources was within the WHO standard level. The mean hazard quotient(HQ) for As in the age group of children was 9.246 and adults 2.972, indicating high non-carcinogenic risk of As in the study area. The lifetime cancer risk(LTCR) of As was 1.36 E-3 for adults and 1.52 E-2 for children, indicating high non-carcinogenic risk of As. The level of HQ and LTCR for Pb in both age groups was in the acceptable range. The results of sensitivity analysis showed that the most effective variables were pollutant concentration and body weight(BW), respectively. Finally, it can be concluded that exposure to PTMs, especially As through drinking water in the study area can have significant effects on people’s health living in the area;therefore, it is necessary to treat and remove As from groundwater resources before drinking or using for domestic purpose. 展开更多
关键词 Drinking water GROUNDwater Health risk assessment Heavy metals potentially toxic metals
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部