This article puts forward a general shape invariant potential, which includes the translational shape invariant potential and scaling shape invariant potential as two particular cases, and derives the set of linear di...This article puts forward a general shape invariant potential, which includes the translational shape invariant potential and scaling shape invariant potential as two particular cases, and derives the set of linear differential equations for obtaining general solutions of the generalized shape invariance condition.展开更多
For natural resource science, resource productivity studying is an important subject. But researches on tourism resource productivity are limited. The most significant influencing factor on tourism resource productivi...For natural resource science, resource productivity studying is an important subject. But researches on tourism resource productivity are limited. The most significant influencing factor on tourism resource productivity is the potential market scale of tourist locations, and second most important influencing factor is the resource endowment. Regional urban population is significantly correlated with region tourist numbers, being the decisive factor of region potential tour market scale. In tourism development, the dual model should be adopted: on one hand to enhance tour spot attractiveness, on the other hand to cultivate the potential market by improving urbanization level and other means. In the situation of tourism development fever spreading, the dual model for improving tourism productivity helps to avoid the "Great Leap Forward" which means that too rapid tourism construction divorces from actual market demand.展开更多
In this study,a persistent heavy rainfall event(PHRE) that lasted for around 9 days(from 0000 UTC 17 to0000 UTC 26 June 2010) and caused accumulated precipitation above 600 mm over the Yangtze River valley,was rea...In this study,a persistent heavy rainfall event(PHRE) that lasted for around 9 days(from 0000 UTC 17 to0000 UTC 26 June 2010) and caused accumulated precipitation above 600 mm over the Yangtze River valley,was reasonably reproduced by the advanced research WRF model.Based on the simulation,a set of energy budget equations that divided the real meteorological field into the mean and eddy flows were calculated so as to understand the interactions between the precipitation-related eddy flows and their background circulations(BCs).The results indicated that the precipitation-related eddy flows interacted with their BCs intensely during the PHRE.At different layers,the energy cycles showed distinct characteristics.In the upper troposphere,downscaled energy cascade processes appeared,which favored the maintenance of upper-level eddy flows;whereas,a baroclinic energy conversion,which reduced the upper-level jet,also occurred.In the middle troposphere,significant upscaled energy cascade processes,which reflect the eddy flows' reactionary effects on their BCs,appeared.These effects cannot be ignored with respect to the BCs' evolution,and the reactionary effects were stronger in the dynamical field than in the thermodynamical field.In the lower troposphere,a long-lived quasi-stationary lower-level shear line was the direct trigger for the PHRE.The corresponding eddy flows were sustained mainly through the baroclinic energy conversion associated with convection activities.Alongside this,the downscaled energy cascade processes of kinetic energy,which reflect the direct influences of BCs on the precipitation-related eddy flows,were also favorable.A downscaled energy cascade of exergy also appeared in the lower troposphere,which favored the precipitation-related eddy flow indirectly via the baroclinic energy conversion.展开更多
文摘This article puts forward a general shape invariant potential, which includes the translational shape invariant potential and scaling shape invariant potential as two particular cases, and derives the set of linear differential equations for obtaining general solutions of the generalized shape invariance condition.
基金Phase Achievement of the Project "National Scientific-basic Special Fund in2008:Scientific Investigation in the Middlelower Reaches of the Lancang River and in Big Shangri-La Areas(Grant No.2008FY110300)"
文摘For natural resource science, resource productivity studying is an important subject. But researches on tourism resource productivity are limited. The most significant influencing factor on tourism resource productivity is the potential market scale of tourist locations, and second most important influencing factor is the resource endowment. Regional urban population is significantly correlated with region tourist numbers, being the decisive factor of region potential tour market scale. In tourism development, the dual model should be adopted: on one hand to enhance tour spot attractiveness, on the other hand to cultivate the potential market by improving urbanization level and other means. In the situation of tourism development fever spreading, the dual model for improving tourism productivity helps to avoid the "Great Leap Forward" which means that too rapid tourism construction divorces from actual market demand.
基金Supported by the National(Key)Basic Research and Development(973)Program of China(2012CB417201)National Natural Science Foundation of China(41375053 and 41505038)
文摘In this study,a persistent heavy rainfall event(PHRE) that lasted for around 9 days(from 0000 UTC 17 to0000 UTC 26 June 2010) and caused accumulated precipitation above 600 mm over the Yangtze River valley,was reasonably reproduced by the advanced research WRF model.Based on the simulation,a set of energy budget equations that divided the real meteorological field into the mean and eddy flows were calculated so as to understand the interactions between the precipitation-related eddy flows and their background circulations(BCs).The results indicated that the precipitation-related eddy flows interacted with their BCs intensely during the PHRE.At different layers,the energy cycles showed distinct characteristics.In the upper troposphere,downscaled energy cascade processes appeared,which favored the maintenance of upper-level eddy flows;whereas,a baroclinic energy conversion,which reduced the upper-level jet,also occurred.In the middle troposphere,significant upscaled energy cascade processes,which reflect the eddy flows' reactionary effects on their BCs,appeared.These effects cannot be ignored with respect to the BCs' evolution,and the reactionary effects were stronger in the dynamical field than in the thermodynamical field.In the lower troposphere,a long-lived quasi-stationary lower-level shear line was the direct trigger for the PHRE.The corresponding eddy flows were sustained mainly through the baroclinic energy conversion associated with convection activities.Alongside this,the downscaled energy cascade processes of kinetic energy,which reflect the direct influences of BCs on the precipitation-related eddy flows,were also favorable.A downscaled energy cascade of exergy also appeared in the lower troposphere,which favored the precipitation-related eddy flow indirectly via the baroclinic energy conversion.