Import potentialities of world apple markets consist of the quantitative size and price level, and to some extent, will determine where the exported apples will be shipped to and how large the amount exported to each ...Import potentialities of world apple markets consist of the quantitative size and price level, and to some extent, will determine where the exported apples will be shipped to and how large the amount exported to each destination will be. Results indicate that apple import potentialities of European markets are the largest among world major apple trading blocks. Apple import potentialities of Asian Markets around China are not as large as Europe, but these markets are easier for China apple exports to enter. China has obvious comparative advantages in many aspects of apple production and apple marketing. In order to enhance her high-quality apple exports effective measures must be taken.展开更多
Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to...Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to abundant sunshine, strong solar radiation andmoderate heat, the agriculture is very developed. The south mountainous area of Ningxia, including both Yanchi and Tongxin counties,is short of rain, The vast lands cannot be irrigated. Nonirrigated agriculture and展开更多
Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already w...Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs.展开更多
Epilepsy frequently leads to cognitive dysfunction and approaches to treatment remain limited.Although regular exercise effectively improves learning and memory functions across multiple neurological diseases,its appl...Epilepsy frequently leads to cognitive dysfunction and approaches to treatment remain limited.Although regular exercise effectively improves learning and memory functions across multiple neurological diseases,its application in patients with epilepsy remains controversial.Here,we adopted a 14-day treadmill-exercise paradigm in a pilocarpine injection-induced mouse model of epilepsy.Cognitive assays confirmed the improvement of object and spatial memory after endurance training,and electrophysiological studies revealed the maintenance of hippocampal plasticity as a result of physical exercise.Investigations of the mechanisms underlying this effect revealed that exercise protected parvalbumin interneurons,probably via the suppression of neuroinflammation and improved integrity of blood-brain barrier.In summary,this work identified a previously unknown mechanism through which exercise improves cognitive rehabilitation in epilepsy.展开更多
Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil...Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.展开更多
The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum ...The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.展开更多
Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organ...Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.展开更多
With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater envir...With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.展开更多
Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with ...Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.展开更多
Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TR...Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature,with further validation of signature in real world samples from our hospital treated patient samples.Kaplan-Meier(K-M)survival analysis and receiver operating characteristic(ROC)curves were employed to evaluate this gene signature’s predictive accuracy and robustness in both training and testing cohorts,respectively.Additionally,the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature’s immune infiltration landscape and underlying functional implications.The support vector machine algorithm was applied to evaluate the signature’s potential in predicting chemotherapy outcomes.The findings unveiled a novel three TRP channels-related gene signature(MCOLN1,TRPM5,and TRPV4)in colon adenocarcinoma(COAD).The ROC and K-M survival curves in the training dataset(AUC=0.761;p=1.58e-05)and testing dataset(AUC=0.699;p=0.004)showed the signature’s robust predictive capability for the overall survival of COAD patients.Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration,especially an increased presence of M2 macrophages,in high-risk group patients compared to their low-risk counterparts.High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy,evident through increased CD86 and PD-1 expression profiles.Moreover,the TRPM5 gene within the signature was highly expressed in the chemoresistance group(p=0.00095)and associated with poor prognosis(p=0.036)in COAD patients,highlighting its role as a hub gene of chemoresistance.Ultimately,this signature emerged as an independent prognosis factor for COAD patients(p=6.48e-06)and expression of model gene are validated by public data and real-world patients.Overall,this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.展开更多
This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles in...This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.展开更多
CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet...CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR.展开更多
The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,a...The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited.展开更多
Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic ...Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.展开更多
Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite ano...Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.展开更多
A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model cor...A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.展开更多
The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassi...The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration.展开更多
In multiple sclerosis,only immunomodulato ry and immunosuppressive drugs are recognized as disease-modifying therapies.Howeve r,in recent years,several data from pre-clinical and clinical studies suggested a possible ...In multiple sclerosis,only immunomodulato ry and immunosuppressive drugs are recognized as disease-modifying therapies.Howeve r,in recent years,several data from pre-clinical and clinical studies suggested a possible role of physical exe rcise as disease-modifying therapy in multiple sclerosis.Current evidence is sparse and often conflicting,and the mechanisms underlying the neuroprotective and antinflammatory role of exercise in multiple sclerosis have not been fully elucidated.Data,mainly derived from pre-clinical studies,suggest that exe rcise could enhance longterm potentiation and thus neuroplasticity,could reduce neuroinflammation and synaptopathy,and dampen astrogliosis and microgliosis.In humans,most trials focused on direct clinical and MRI outcomes,as investigating synaptic,neuroinflammato ry,and pathological changes is not straightfo rward compared to animal models.The present review analyzed current evidence and limitations in research concerning the potential disease-modifying therapy effects of exercise in multiple sclerosis in animal models and human studies.展开更多
Neurological disorders and injuries lead to the impairment or depletion of neurons in terms of quantity,structure,or function,resulting in the loss of cognitive,emotional,and physical abilities in human beings.This,in...Neurological disorders and injuries lead to the impairment or depletion of neurons in terms of quantity,structure,or function,resulting in the loss of cognitive,emotional,and physical abilities in human beings.This,in turn,accompanies the shortfall of valuable human resources and economic potential,causing a detriment to society.Addressing these challenges,therefore,becomes imperative not only from a humanitarian perspective but also as a means of preserving human capital and bolstering economic prosperity.展开更多
In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation e...In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.展开更多
文摘Import potentialities of world apple markets consist of the quantitative size and price level, and to some extent, will determine where the exported apples will be shipped to and how large the amount exported to each destination will be. Results indicate that apple import potentialities of European markets are the largest among world major apple trading blocks. Apple import potentialities of Asian Markets around China are not as large as Europe, but these markets are easier for China apple exports to enter. China has obvious comparative advantages in many aspects of apple production and apple marketing. In order to enhance her high-quality apple exports effective measures must be taken.
文摘Situated in arid and semi-arid lands, the Ningxia Hui Autonomous Region is locatedat the middle reaches of the Yellow River. An adequate system of gravity irrigation was es-tablished in the north of Ningxia. Adding to abundant sunshine, strong solar radiation andmoderate heat, the agriculture is very developed. The south mountainous area of Ningxia, including both Yanchi and Tongxin counties,is short of rain, The vast lands cannot be irrigated. Nonirrigated agriculture and
基金the National Natural Science Foundation of China(Nos.552104156,52074351,and 52004330)the National Natural Science Foundation of Hunan Province,China(No.2022JJ30714)the Science and Technology Innovation Program of Hunan Province,China(No.2021RC3125)。
文摘Phosphogypsum(PG),a hard-to-dissipate by-product of the phosphorus fertilizer production industry,places strain on the biogeochemical cycles and ecosystem functions of storage sites.This pervasive problem is already widespread worldwide and requires careful stewardship.In this study,we review the presence of potentially toxic elements(PTEs)in PG and describe their associations with soil properties,anthropogenic activities,and surrounding organisms.Then,we review different ex-/in-situ solutions for promoting the sustainable management of PG,with an emphasis on in-situ cemented paste backfill,which offers a cost-effective and highly scalable opportunity to advance the value-added recovery of PG.However,concerns related to the PTEs'retention capacity and long-term effectiveness limit the implementation of this strategy.Furthermore,given that the large-scale demand for ordinary Portland cement from this conventional option has resulted in significant CO_(2) emissions,the technology has recently undergone additional scrutiny to meet the climate mitigation ambition of the Paris Agreement and China's Carbon Neutrality Economy.Therefore,we discuss the ways by which we can integrate innovative strategies,including supplementary cementitious materials,alternative binder solutions,CO_(2) mineralization,CO_(2) curing,and optimization of the supply chain for the profitability and sustainability of PG remediation.However,to maximize the co-benefits in environmental,social,and economic,future research must bridge the gap between the feasibility of expanding these advanced pathways and the multidisciplinary needs.
基金supported by STI2030-Major Projects,No.2022ZD0207600 (to LZ)the National Natural Science Foundation of China,Nos.821 71446 (to JY),U22A20301 (to KFS),32070955 (to LZ)+1 种基金Guangdong Basic and Applied Basic Research Foundation,No.202381515040015 (to LZ)Science and Technology Program of Guangzhou of China,No.202007030012 (to KFS and LZ)
文摘Epilepsy frequently leads to cognitive dysfunction and approaches to treatment remain limited.Although regular exercise effectively improves learning and memory functions across multiple neurological diseases,its application in patients with epilepsy remains controversial.Here,we adopted a 14-day treadmill-exercise paradigm in a pilocarpine injection-induced mouse model of epilepsy.Cognitive assays confirmed the improvement of object and spatial memory after endurance training,and electrophysiological studies revealed the maintenance of hippocampal plasticity as a result of physical exercise.Investigations of the mechanisms underlying this effect revealed that exercise protected parvalbumin interneurons,probably via the suppression of neuroinflammation and improved integrity of blood-brain barrier.In summary,this work identified a previously unknown mechanism through which exercise improves cognitive rehabilitation in epilepsy.
基金Supported by the National Natural Science Foundation(42202133,42072174,42130803,41872148)PetroChina Science and Technology Innovation Fund(2023DQ02-0106)PetroChina Basic Technology Project(2021DJ0101).
文摘Taking the Lower Permian Fengcheng Formation shale in Mahu Sag of Junggar Basin,NW China,as an example,core observation,test analysis,geological analysis and numerical simulation were applied to identify the shale oil micro-migration phenomenon.The hydrocarbon micro-migration in shale oil was quantitatively evaluated and verified by a self-created hydrocarbon expulsion potential method,and the petroleum geological significance of shale oil micro-migration evaluation was determined.Results show that significant micro-migration can be recognized between the organic-rich lamina and organic-poor lamina.The organic-rich lamina has strong hydrocarbon generation ability.The heavy components of hydrocarbon preferentially retained by kerogen swelling or adsorption,while the light components of hydrocarbon were migrated and accumulated to the interbedded felsic or carbonate organic-poor laminae as free oil.About 69% of the Fengcheng Formation shale samples in Well MY1 exhibit hydrocarbon charging phenomenon,while 31% of those exhibit hydrocarbon expulsion phenomenon.The reliability of the micro-migration evaluation results was verified by combining the group components based on the geochromatography effect,two-dimension nuclear magnetic resonance analysis,and the geochemical behavior of inorganic manganese elements in the process of hydrocarbon migration.Micro-migration is a bridge connecting the hydrocarbon accumulation elements in shale formations,which reflects the whole process of shale oil generation,expulsion and accumulation,and controls the content and composition of shale oil.The identification and evaluation of shale oil micro-migration will provide new perspectives for dynamically differential enrichment mechanism of shale oil and establishing a“multi-peak model in oil generation”of shale.
基金funded by the State Key Petroleum Lab of Petroleum Resources and Prospecting at China University of Petroleum (Beijing)
文摘The Paleocene mudrocks in Ghana’s Tano Basin have received limited attention despite ongoing efforts to explore hydrocarbon resources.A thorough geochemical analysis is imperative to assess these mudrocks’petroleum generation potential and formulate effective exploration strategies.In this study,a comprehensive geochemical analysis was carried out on ten Paleocene rock cuttings extracted from TP-1,a discovery well within the Tano Basin.Various analytical techniques,including total organic carbon(TOC)analysis,Rock–Eval pyrolysis,gas chromatography-mass spectrometry,and isotope ratio-mass spectrometry,were employed to elucidate their hydrocar-bon potential and organic facies.Thefindings in this study were subsequently compared to existing geochemical data on Paleocene source rocks in the South Atlantic marginal basins.The results indicated that the Paleocene samples have TOC content ranging from 0.68 to 2.93 wt%.The prevalent kerogen types identified in these samples were Type Ⅱ and Type Ⅲ.Molecular and isotope data suggest that the organic matter found in the Paleocene mudrocks can be traced back to land plants and lower aquatic organisms.These mudrocks were deposited in a transi-tional environment withfluctuating water salinity,charac-terized by sub-oxic redox conditions.Maturity indices,both bulk and molecular,indicated a spectrum of maturity levels within the Paleocene mudrocks,spanning from immature to marginally mature,with increasing maturity observed with greater depth.In comparison,the organic composition and depositional environments of Paleocene source rocks in the Tano Basin closely resemble those found in the Niger Delta Basin,Douala,and Kribi-Campo Basins,the Kwanza Formation in Angola,and certain Brazilian marginal basins.However,it is worth noting that Paleocene source rocks in some of the basins,such as the Niger Delta and Brazilian marginal basins,exhibit rela-tively higher thermal maturity levels compared to those observed in the current Paleocene samples from the Tano Basin.In conclusion,the comprehensive geochemical analysis of Paleocene mudrocks within Ghana’s Tano Basin has unveiled their marginal hydrocarbon generation potential.The shared geochemical characteristics between the Paleocene mudrocks in the Tano Basin and those in the nearby South Atlantic marginal basins offer valuable insights into source rock quality,which is crucial for shaping future strategies in petroleum exploration in this region.
基金This research is supported by the Joint Fund of the National Natural Science Foundation of China(grant number U19B6003-02)the Cooperation Program of PetroChina Liaohe Oilfield Company(grant Number HX20180604)the AAPG Foundation Grants-in-Aid Program(grant number 22269437).This study has benefited considerably from PetroChina Liaohe Oilfield Company for data support.We also thank the editor and the anonymous reviewers for their professional suggestions and comments.
文摘Kerogen types exert a decisive effect on the onset and capacity of hydrocarbon generation of source rocks.Lacustrine source rocks in the Liaohe Western Depression are characterized by thick deposition,high total organic carbon(TOC)content,various kerogen types,and a wide range of thermal maturity.Consequently,their hydrocarbon generation potential and resource estimation can be misinterpreted.In this study,geochemical tests,numerical analysis,hydrocarbon generation kinetics,and basin modeling were integrated to investigate the differential effects of kerogen types on the hydrocarbon generation potential of lacustrine source rocks.Optimized hydrocarbon generation and expulsion(HGE)models of different kerogen types were established quantitatively upon abundant Rock-Eval/TOC/vitrinite reflectance(R_(o))datasets.Three sets of good-excellent source rocks deposited in the fourth(Es4),third(Es3),and first(Es1)members of Paleogene Shahejie Formation,are predominantly types I-II_(1),II_(1)-II_(2),and II-III,respectively.The activation energy of types I-II_(2)kerogen is concentrated(180-230 kcal/mol),whereas that of type III kerogen is widely distributed(150-280 kcal/mol).The original hydrocarbon generation potentials of types I,II_(1),II_(2),and III kerogens are 790,510,270,and 85 mg/g TOC,respectively.The Ro values of the hydrocarbon generation threshold for type I-III source rocks gradually increase from 0.42%to 0.74%,and Ro values of the hydrocarbon expulsion threshold increase from 0.49%to 0.87%.Types I and II_(1)source rocks are characterized by earlier hydrocarbon generation,more rapid hydrocarbon expulsion,and narrower hydrocarbon generation windows than types II_(2)and III source rocks.The kerogen types also affect the HGE history and resource potential.Three types(conventional,tight,and shale oil/gas)and three levels(realistic,expected,and prospective)of hydrocarbon resources of different members in the Liaohe Western Depression are evaluated.Findings suggest that the Es3 member has considerable conventional and unconventional hydrocarbon resources.This study can quantitatively characterize the hydrocarbon generation potential of source rocks with different kerogen types,and facilitate a quick and accurate assessment of hydrocarbon resources,providing strategies for future oil and gas exploration.
基金supported by Research Program supported by the National Natural Science Foundation of China(No.62201249)the Jiangsu Agricultural Science and Technology Innovation Fund(No.CX(21)1007)+2 种基金the Open Project of the Zhejiang Provincial Key Laboratory of Crop Harvesting Equipment and Technology(Nos.2021KY03,2021KY04)University-Industry Collaborative Education Program(No.201801166003)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX22_1042).
文摘With the increase in ocean exploration activities and underwater development,the autonomous underwater vehicle(AUV)has been widely used as a type of underwater automation equipment in the detection of underwater environments.However,nowadays AUVs generally have drawbacks such as weak endurance,low intelligence,and poor detection ability.The research and implementation of path-planning methods are the premise of AUVs to achieve actual tasks.To improve the underwater operation ability of the AUV,this paper studies the typical problems of path-planning for the ant colony algorithm and the artificial potential field algorithm.In response to the limitations of a single algorithm,an optimization scheme is proposed to improve the artificial potential field ant colony(APF-AC)algorithm.Compared with traditional ant colony and comparative algorithms,the APF-AC reduced the path length by 1.57%and 0.63%(in the simple environment),8.92%and 3.46%(in the complex environment).The iteration time has been reduced by approximately 28.48%and 18.05%(in the simple environment),18.53%and 9.24%(in the complex environment).Finally,the improved APF-AC algorithm has been validated on the AUV platform,and the experiment is consistent with the simulation.Improved APF-AC algorithm can effectively reduce the underwater operation time and overall power consumption of the AUV,and shows a higher safety.
基金Supported by the National Natural Science Foundation of China(41802177,42272188)PetroChina Basic Technology Research and Development Project(2021DJ0206,2022DJ0507)Research Fund of PetroChina Basic Scientific Research and Strategic Reserve Technology(2020D-5008-04).
文摘Based on the organic geochemical data and the molecular and stable carbon isotopic compositions of natural gas of the Lower Permian Fengcheng Formation in the western Central Depression of Junggar Basin,combined with sedimentary environment analysis and hydrocarbon-generating simulation,the gas-generating potential of the Fengcheng source rock is evaluated,the distribution of large-scale effective source kitchen is described,the genetic types of natural gas are clarified,and four types of favorable exploration targets are selected.The results show that:(1)The Fengcheng Formation is a set of oil-prone source rocks,and the retained liquid hydrocarbon is conducive to late cracking into gas,with characteristics of high gas-generating potential and late accumulation;(2)The maximum thickness of Fengcheng source rock reaches 900 m.The source rock has entered the main gas-generating stage in Penyijingxi and Shawan sags,and the area with gas-generating intensity greater than 20×10^(8) m^(3)/km^(2) is approximately 6500 km^(2).(3)Around the western Central Depression,highly mature oil-type gas with light carbon isotope composition was identified to be derived from the Fengcheng source rocks mainly,while the rest was coal-derived gas from the Carboniferous source rock;(4)Four types of favorable exploration targets with exploration potential were developed in the western Central Depression which are structural traps neighboring to the source,stratigraphic traps neighboring to the source,shale-gas type within the source,and structural traps within the source.Great attention should be paid to these targets.
基金the Ethics Committee of University Magdeburg(Ethical code:33/0119.03.2001).
文摘Transient receptor potential(TRP)channels are strongly associated with colon cancer development and progression.This study leveraged a multivariate Cox regression model on publicly available datasets to construct a TRP channels-associated gene signature,with further validation of signature in real world samples from our hospital treated patient samples.Kaplan-Meier(K-M)survival analysis and receiver operating characteristic(ROC)curves were employed to evaluate this gene signature’s predictive accuracy and robustness in both training and testing cohorts,respectively.Additionally,the study utilized the CIBERSORT algorithm and single-sample gene set enrichment analysis to explore the signature’s immune infiltration landscape and underlying functional implications.The support vector machine algorithm was applied to evaluate the signature’s potential in predicting chemotherapy outcomes.The findings unveiled a novel three TRP channels-related gene signature(MCOLN1,TRPM5,and TRPV4)in colon adenocarcinoma(COAD).The ROC and K-M survival curves in the training dataset(AUC=0.761;p=1.58e-05)and testing dataset(AUC=0.699;p=0.004)showed the signature’s robust predictive capability for the overall survival of COAD patients.Analysis of the immune infiltration landscape associated with the signature revealed higher immune infiltration,especially an increased presence of M2 macrophages,in high-risk group patients compared to their low-risk counterparts.High-risk score patients also exhibited potential responsiveness to immune checkpoint inhibitor therapy,evident through increased CD86 and PD-1 expression profiles.Moreover,the TRPM5 gene within the signature was highly expressed in the chemoresistance group(p=0.00095)and associated with poor prognosis(p=0.036)in COAD patients,highlighting its role as a hub gene of chemoresistance.Ultimately,this signature emerged as an independent prognosis factor for COAD patients(p=6.48e-06)and expression of model gene are validated by public data and real-world patients.Overall,this bioinformatics study provides valuable insights into the prognostic implications and potential chemotherapy resistance mechanisms associated with TRPs-related genes in colon cancer.
基金the National Natural Science Foundation of China(51939001,52171292,51979020,61976033)Dalian Outstanding Young Talents Program(2022RJ05)+1 种基金the Topnotch Young Talents Program of China(36261402)the Liaoning Revitalization Talents Program(XLYC20-07188)。
文摘This paper investigates the path-following control problem with obstacle avoidance of autonomous surface vehicles in the presence of actuator faults,uncertainty and external disturbances.Autonomous surface vehicles inevitably suffer from actuator faults in complex sea environments,which may cause existing obstacle avoidance strategies to fail.To reduce the influence of actuator faults,an improved artificial potential function is constructed by introducing the lower bound of actuator efficiency factors.The nonlinear state observer,which only depends on measurable position information of the autonomous surface vehicle,is used to address uncertainties and external disturbances.By using a backstepping technique and adaptive mechanism,a path-following control strategy with obstacle avoidance and fault tolerance is designed which can ensure that the tracking errors converge to a small neighborhood of zero.Compared with existing results,the proposed control strategy has the capability of obstacle avoidance and fault tolerance simultaneously.Finally,the comparison results through simulations are given to verify the effectiveness of the proposed method.
基金financially supported by the National Natural Science Foundation of China(52072409)the Major Scientific and Technological Innovation Project of Shandong Province(2020CXGC010403)+1 种基金the Taishan Scholar Project(No.ts201712020)the Natural Science Foundation of Shandong Province(ZR2021QE062)
文摘CO_(2)electrochemical reduction reaction(CO_(2)RR)to formate is a hopeful pathway for reducing CO_(2)and producing high-value chemicals,which needs highly selective catalysts with ultra-broad potential windows to meet the industrial demands.Herein,the nanorod-like bimetallic ln_(2)O_(3)/Bi_(2)O_(3)catalysts were successfully synthesized by pyrolysis of bimetallic InBi-MOF precursors.The abundant oxygen vacancies generated from the lattice mismatch of Bi_(2)O_(3)and ln_(2)O_(3)reduced the activation energy of CO_(2)to*CO_(2)·^(-)and improved the selectivity of*CO_(2)·^(-)to formate simultaneously.Meanwhile,the carbon skeleton derived from the pyrolysis of organic framework of InBi-MOF provided a conductive network to accelerate the electrons transmission.The catalyst exhibited an ultra-broad applied potential window of 1200 mV(from-0.4 to-1.6 V vs RHE),relativistic high Faradaic efficiency of formate(99.92%)and satisfactory stability after 30 h.The in situ FT-IR experiment and DFT calculation verified that the abundant oxygen vacancies on the surface of catalysts can easily absorb CO_(2)molecules,and oxygen vacancy path is dominant pathway.This work provides a convenient method to construct high-performance bimetallic catalysts for the industrial application of CO_(2)RR.
文摘The Bozhong Sag is the largest petroliferous sag in the Bohai Bay Basin,and the source rocks of Paleogene Dongying and Shahejie Formations were buried deeply.Most of the drillings were located at the structural high,and there were few wells that met good quality source rocks,so it is difficult to evaluate the source rocks in the study area precisely by geochemical analysis only.Based on the Rock-Eval pyrolysis,total organic carbon(TOC)testing,the organic matter(OM)abundance of Paleogene source rocks in the southwestern Bozhong Sag were evaluated,including the lower of second member of Dongying Formation(E_(3)d2L),the third member of Dongying Formation(E_(3)d_(3)),the first and second members of Shahejie Formation(E_(2)s_(1+2)),the third member of Shahejie Formation(E_(2)s_(3)).The results indicate that the E_(2)s_(1+2)and E_(2)s_(3)have better hydrocarbon generative potentials with the highest OM abundance,the E_(3)d_(3)are of the second good quality,and the E_(3)d2L have poor to fair hydrocarbon generative potential.Furthermore,the well logs were applied to predict TOC and residual hydrocarbon generation potential(S_(2))based on the sedimentary facies classification,usingΔlogR,generalizedΔlogR,logging multiple linear regression and BP neural network methods.The various methods were compared,and the BP neural network method have relatively better prediction accuracy.Based on the pre-stack simultaneous inversion(P-wave impedance,P-wave velocity and density inversion results)and the post-stack seismic attributes,the three-dimensional(3D)seismic prediction of TOC and S_(2)was carried out.The results show that the seismic near well prediction results of TOC and S_(2)based on seismic multi-attributes analysis correspond well with the results of well logging methods,and the plane prediction results are identical with the sedimentary facies map in the study area.The TOC and S_(2)values of E_(2)s_(1+2)and E_(2)s_(3)are higher than those in E_(3)d_(3)and E_(3)d_(2)L,basically consistent with the geochemical analysis results.This method makes up the deficiency of geochemical methods,establishing the connection between geophysical information and geochemical data,and it is helpful to the 3D quantitative prediction and the evaluation of high-quality source rocks in the areas where the drillings are limited.
基金supported by the National Natural Science Foundation of China,No.81971246 (to TM)Opening Foundation of Jiangsu Key Laboratory of Neurodegeneration,Nanjing Medical University,No.KF202204 (to LZ and SF)。
文摘Methamphetamine addiction is a brain disorder characterized by persistent drug-seeking behavior, which has been linked with aberrant synaptic plasticity. An increasing body of evidence suggests that aberrant synaptic plasticity is associated with the activation of the NOD-like receptor family pyrin domain containing-3(NLRP3) inflammasome. 3′-Deoxyadenosin, an active component of the Chinese fungus Cordyceps militaris, has strong anti-inflammatory effects. However, whether 3′-deoxyadenosin attenuates methamphetamine-induced aberrant synaptic plasticity via an NLRP3-mediated inflammatory mechanism remains unclear. We first observed that 3′-deoxyadenosin attenuated conditioned place preference scores in methamphetamine-treated mice and decreased the expression of c-fos in hippocampal neurons. Furthermore, we found that 3′-deoxyadenosin reduced the aberrant potentiation of glutamatergic transmission and restored the methamphetamine-induced impairment of synaptic plasticity. We also found that 3′-deoxyadenosin decreased the expression of NLRP3 and neuronal injury. Importantly, a direct NLRP3 deficiency reduced methamphetamine-induced seeking behavior, attenuated the impaired synaptic plasticity, and prevented neuronal damage. Finally, NLRP3 activation reversed the effect of 3′-deoxyadenosin on behavior and synaptic plasticity, suggesting that the anti-neuroinflammatory mechanism of 3′-deoxyadenosin on aberrant synaptic plasticity reduces methamphetamine-induced seeking behavior. Taken together, 3′-deoxyadenosin alleviates methamphetamine-induced aberrant synaptic plasticity and seeking behavior by inhibiting the NLRP3 inflammasome.
基金supported by the National Natural Science Foundation of China(T2322015,22209094,22209093,and 22109086)the National Key Research and Development Program(2021YFB2500300)+2 种基金the Open Research Fund of CNMGE Platform&NSCC-TJOrdos-Tsinghua Innovative&Collaborative Research Program in Carbon Neutralitythe Tsinghua University Initiative Scientific Research Program。
文摘Electric double layer(EDL)is a critical topic in electrochemistry and largely determines the working performance of lithium batteries.However,atomic insights into the EDL structures on heteroatom-modified graphite anodes and EDL evolution with electrode potential are very lacking.Herein,a constant-potential molecular dynamics(CPMD)method is proposed to probe the EDL structure under working conditions,taking N-doped graphite electrodes and carbonate electrolytes as an example.An interface model was developed,incorporating the electrode potential and atom electronegativities.As a result,an insightful atomic scenario for the EDL structure under varied electrode potentials has been established,which unveils the important role of doping sites in regulating both the EDL structures and the following electrochemical reactions at the atomic level.Specifically,the negatively charged N atoms repel the anions and adsorb Li~+at high and low potentials,respectively.Such preferential adsorption suggests that Ndoped graphite can promote Li~+desolvation and regulate the location of Li~+deposition.This CPMD method not only unveils the mysterious function of N-doping from the viewpoint of EDL at the atomic level but also applies to probe the interfacial structure on other complicated electrodes.
基金financially supported from the National Key Research and Development Program of China(No.2019YFC1803601)the Fundamental Research Funds for the Central Universities of Central South University,China(No.2023ZZTS0801)+1 种基金the Postgraduate Innovative Project of Central South University,China(No.2023XQLH068)the Postgraduate Scientific Research Innovation Project of Hunan Province,China(No.QL20230054)。
文摘A general prediction model for seven heavy metals was established using the heavy metal contents of 207soil samples measured by a portable X-ray fluorescence spectrometer(XRF)and six environmental factors as model correction coefficients.The eXtreme Gradient Boosting(XGBoost)model was used to fit the relationship between the content of heavy metals and environment characteristics to evaluate the soil ecological risk of the smelting site.The results demonstrated that the generalized prediction model developed for Pb,Cd,and As was highly accurate with fitted coefficients(R^(2))values of 0.911,0.950,and 0.835,respectively.Topsoil presented the highest ecological risk,and there existed high potential ecological risk at some positions with different depths due to high mobility of Cd.Generally,the application of machine learning significantly increased the accuracy of pXRF measurements,and identified key environmental factors.The adapted potential ecological risk assessment emphasized the need to focus on Pb,Cd,and As in future site remediation efforts.
基金supported by the National Natural Science Foundation Program of China(42102095,42362013,42363009)the Jiangxi Provincial Natural Science Foundation(20224BAB203036,20224BAB213040,20224ACB203008)the Open Research Fund Program of State Key Laboratory of Nuclear Resources and Environment,East China University of Technology(2022NRE12).
文摘The Gangdese belt in Xizang has experienced both Jurassic subduction and Cenozoic continental collision processes, making it a globally renowned region for magmatic rocks and porphyry copper deposits. Numerous Jurassic intrusions have been identified in the belt. Apart from the quartz diorite porphyry in the large Xietongmen deposit, the Cu mineralization potential of other Jurassic intrusions in this belt remains unclear. This study presents zircon U–Pb dating and trace elements, apatite major and trace elements as well as published whole-rock geochemical and isotopic data of the Dongga tonalite in the central part of the Gangdese belt, aiming to reveal the petrogenesis, oxidation state, volatile content, and Cu mineralization potential of this intrusion. The Dongga tonalite has a zircon U–Pb age of 179.4 ± 0.9 Ma. It exhibits high whole-rock V/Sc values(8.76–14.6), relatively low apatite CeN/CeN*ratios(1.04–1.28), elevated zircon(Eu/Eu*)Nvalues(an average of 0.44), high Ce4+/Ce3+values(205–1896), and high ?FMQ values(1.3–3.7), collectively suggesting a high magmatic oxygen fugacity. The Dongga tonalite features amphibole phenocrysts, relatively high whole-rock Sr/Y ratios(20.3–58.9), and lower zircon Ti temperatures (502–740 ℃), reflecting a high magmatic water content. Estimation of magmatic sulfur content(0.002–0.024 wt%) based on apatite SO3contents indicates an enriched magma sulfur content. Combined with previous studies and the collected Sr–Nd–Hf isotopes, the Dongga tonalite is derived from juvenile lower crust related with subduction of the Neo-Tethys oceanic slab. When compared with Xietongmen orebearing porphyries, the Dongga tonalite exhibits remarkable similarities with the Xietongmen ore-bearing porphyries in terms of magma source, tectonic background, magmatic redox state, and volatile components, which indicates that the Dongga tonalite has a high porphyry Cu mineralization potential, and therefore, provides important guidance for the future mineralization exploration.
文摘In multiple sclerosis,only immunomodulato ry and immunosuppressive drugs are recognized as disease-modifying therapies.Howeve r,in recent years,several data from pre-clinical and clinical studies suggested a possible role of physical exe rcise as disease-modifying therapy in multiple sclerosis.Current evidence is sparse and often conflicting,and the mechanisms underlying the neuroprotective and antinflammatory role of exercise in multiple sclerosis have not been fully elucidated.Data,mainly derived from pre-clinical studies,suggest that exe rcise could enhance longterm potentiation and thus neuroplasticity,could reduce neuroinflammation and synaptopathy,and dampen astrogliosis and microgliosis.In humans,most trials focused on direct clinical and MRI outcomes,as investigating synaptic,neuroinflammato ry,and pathological changes is not straightfo rward compared to animal models.The present review analyzed current evidence and limitations in research concerning the potential disease-modifying therapy effects of exercise in multiple sclerosis in animal models and human studies.
基金supported in part by National Institutes of Health grants,R01AR068279(NIAMS),STTR R42EY031196(NEI),and STTR 1R41AG057242(NIA)(to HD).
文摘Neurological disorders and injuries lead to the impairment or depletion of neurons in terms of quantity,structure,or function,resulting in the loss of cognitive,emotional,and physical abilities in human beings.This,in turn,accompanies the shortfall of valuable human resources and economic potential,causing a detriment to society.Addressing these challenges,therefore,becomes imperative not only from a humanitarian perspective but also as a means of preserving human capital and bolstering economic prosperity.
基金supported by the NSFC(12101012)the PhD Scientific Research Start-up Foundation of Anhui Normal University.Zeng’s research was supported by the NSFC(11961160716,11871054,12131017).
文摘In this article, we study the smoothing effect of the Cauchy problem for the spatially homogeneous non-cutoff Boltzmann equation for hard potentials. It has long been suspected that the non-cutoff Boltzmann equation enjoys similar regularity properties as to whose of the fractional heat equation. We prove that any solution with mild regularity will become smooth in Gevrey class at positive time, with a sharp Gevrey index, depending on the angular singularity. Our proof relies on the elementary L^(2) weighted estimates.