In dielectrics and semiconductors, a plasma model of the generation and slip of dislocations is considered, where under shock loads in a generalized space of rectangular pulses an alternating field forms a distributio...In dielectrics and semiconductors, a plasma model of the generation and slip of dislocations is considered, where under shock loads in a generalized space of rectangular pulses an alternating field forms a distribution of pairs of photoelectrons and cations;these electrons with velocities <em>V<sub>e</sub></em> create <em>δ</em>-collisions with cold plasma from free electrons and holes with masses <em>m<sub>e</sub></em> and <em>m<sub>h</sub></em> (<em>m<sub>h</sub></em> <span style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">≫</span></span> </span></span><em>m<sub>e</sub></em>), they emit and absorb longitudinal electron plasma waves whose phase velocities <em>w<sub>pw</sub></em> / <em>k<sub>pw</sub></em> are close to or are equal to the velocities <em>V<sub>e</sub></em>, while the frequencies <em>w<sub>pw</sub></em> and wave numbers <em>k<sub>pw</sub></em> of the wave packet of plasma waves are complex, the short-wave components <img src="Edit_3da65014-7fd8-4799-bcf1-02d90028f4e0.bmp" alt="" /> of this wave packet at <em>k<sub>pw</sub></em> <span style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span> </span><em>a<sub>e </sub></em><span style="white-space:nowrap;">≫ </span>1 (<em>a<sub>e</sub></em> -Debye screening radius) decay in the core linear defect, and its long-wavelength components <img src="Edit_4481889b-5097-4d26-9019-b0322f5ff8d0.bmp" alt="" /> propagate in the region of the medium surrounding the core of the defect at <em>k<sub>pw</sub></em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span> <em>a<sub>e</sub></em> <span style="white-space:nowrap;"><<span style="white-space:nowrap;"><span style="white-space:nowrap;">≅</span></span></span> 1. When a defect is generated, the distribution of cations under the influence of the internal Coulomb field shifts to the region of the first peak (protrusion) of the electron plasma wave, thereby forming a vacancy valley. When sliding under the influence of an external electric field, a cationic plasma wave consisting of a vacancy valley and two cationic protrusions moves against the background of an additional potential relief created by an electron plasma wave near the core of the defect. It has been shown that <em>δ</em>-collisions create flows of dynamic large-scale correlations of plasma fluctuations in the form of asymptotics of different-time correlators of density and potential fluctuations as <em>t</em> → +∞.展开更多
A single (independent of each other) protein motor system with fluctuating potential barrier and subject to sine electric field is investigated. We first derive the approximate Langevin equation of this system with ...A single (independent of each other) protein motor system with fluctuating potential barrier and subject to sine electric field is investigated. We first derive the approximate Langevin equation of this system with fluctuating potential barrier. Then from this approximate Langevin equation, we calculate the signal-to-noise ratio (SNR) in the adiabatic limit. The phenomenon of stochastic resonance is found for this protein motor system with fluctuating potential barrier.展开更多
Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=Σ_(i=1)~d c_i|x_i/a_i|^(n_i) has been calculated in arbitrary dimensions.Energy fluctuation is scrutinized further in the degenerate l...Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=Σ_(i=1)~d c_i|x_i/a_i|^(n_i) has been calculated in arbitrary dimensions.Energy fluctuation is scrutinized further in the degenerate limit μ>>K_B T with the help of Sommerfeld expansion.The dependence of energy fluctuation on dimensionality and power law potential is studied in detail.Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d =3 but also can describe the outcome for any power law potential in arbitrary dimension.展开更多
It is a long-term challenge to further improve the corrosion resistance while ensuring the strength of magnesium(Mg)alloys.Revealing the effect of potential fluctuation on the micro-galvanic corrosion and the subseque...It is a long-term challenge to further improve the corrosion resistance while ensuring the strength of magnesium(Mg)alloys.Revealing the effect of potential fluctuation on the micro-galvanic corrosion and the subsequent film formation is important for understanding the corrosion mechanism of Mg alloys with multiple strengthening phases/structures.Here,we prepared the high-strength Mg-14.4Er-1.44Zn-0.3Zr(wt.%)alloys containing hybrid structures,i.e.,elongated long-period stacking ordered(LPSO)blocks+intragranular stacking faults(SFs)/LPSO lamellae.The Mg alloy with elongated LPSO blocks and intragranular LPSO lamellae(EZ-500 alloy)obtains good corrosion resistance(2.2 mm y^(–1)),while the Mg alloy containing elongated LPSO blocks and intragranular SFs(EZ-400 alloy)shows a significantly higher corrosion rate(6.9 mm y^(–1)).The results of scanning Kelvin probe force microscopy(SKPFM)show the elongated LPSO blocks act as cathode phase(87 mV in EZ-400 alloy),and the SFs serve as the weak anode(30 mV in EZ-400 alloy),resulting in high potential fluctuation in EZ-400 alloy.On the contrary,both elongated blocks and intragranular lamellae are cathodic LPSO phase(67–69 mV)in EZ-500 alloy,leading to a lower potential fluctuation.Quasi in-situ atomic force microscope(AFM)observation indicates that high potential fluctuation would cause strong micro-galvanic corrosion,and subsequently leads to the failure in rapid formation of corrosion film,finally forming a loose and porous film,while relatively low potential fluctuation could result in more uniform corrosion mode and facilitate the rapid formation of protective film.Therefore,we propose that it is an effective way to develop high-strength corrosionresistant Mg alloys by controlling the potential fluctuation to form a“uniform potential”strengthening microstructure。展开更多
文摘In dielectrics and semiconductors, a plasma model of the generation and slip of dislocations is considered, where under shock loads in a generalized space of rectangular pulses an alternating field forms a distribution of pairs of photoelectrons and cations;these electrons with velocities <em>V<sub>e</sub></em> create <em>δ</em>-collisions with cold plasma from free electrons and holes with masses <em>m<sub>e</sub></em> and <em>m<sub>h</sub></em> (<em>m<sub>h</sub></em> <span style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">≫</span></span> </span></span><em>m<sub>e</sub></em>), they emit and absorb longitudinal electron plasma waves whose phase velocities <em>w<sub>pw</sub></em> / <em>k<sub>pw</sub></em> are close to or are equal to the velocities <em>V<sub>e</sub></em>, while the frequencies <em>w<sub>pw</sub></em> and wave numbers <em>k<sub>pw</sub></em> of the wave packet of plasma waves are complex, the short-wave components <img src="Edit_3da65014-7fd8-4799-bcf1-02d90028f4e0.bmp" alt="" /> of this wave packet at <em>k<sub>pw</sub></em> <span style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span> </span><em>a<sub>e </sub></em><span style="white-space:nowrap;">≫ </span>1 (<em>a<sub>e</sub></em> -Debye screening radius) decay in the core linear defect, and its long-wavelength components <img src="Edit_4481889b-5097-4d26-9019-b0322f5ff8d0.bmp" alt="" /> propagate in the region of the medium surrounding the core of the defect at <em>k<sub>pw</sub></em> <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">⋅</span></span></span> <em>a<sub>e</sub></em> <span style="white-space:nowrap;"><<span style="white-space:nowrap;"><span style="white-space:nowrap;">≅</span></span></span> 1. When a defect is generated, the distribution of cations under the influence of the internal Coulomb field shifts to the region of the first peak (protrusion) of the electron plasma wave, thereby forming a vacancy valley. When sliding under the influence of an external electric field, a cationic plasma wave consisting of a vacancy valley and two cationic protrusions moves against the background of an additional potential relief created by an electron plasma wave near the core of the defect. It has been shown that <em>δ</em>-collisions create flows of dynamic large-scale correlations of plasma fluctuations in the form of asymptotics of different-time correlators of density and potential fluctuations as <em>t</em> → +∞.
基金The project supported by the National Natural Science Foundation of China under Grant No.10375009by SRF for ROCS,SEM,and by K.C.Wong Magna Fund in Ningbo University of China
文摘A single (independent of each other) protein motor system with fluctuating potential barrier and subject to sine electric field is investigated. We first derive the approximate Langevin equation of this system with fluctuating potential barrier. Then from this approximate Langevin equation, we calculate the signal-to-noise ratio (SNR) in the adiabatic limit. The phenomenon of stochastic resonance is found for this protein motor system with fluctuating potential barrier.
文摘Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=Σ_(i=1)~d c_i|x_i/a_i|^(n_i) has been calculated in arbitrary dimensions.Energy fluctuation is scrutinized further in the degenerate limit μ>>K_B T with the help of Sommerfeld expansion.The dependence of energy fluctuation on dimensionality and power law potential is studied in detail.Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d =3 but also can describe the outcome for any power law potential in arbitrary dimension.
基金supported by the National Natural Science Foundation of China(Nos.51871069,52071093,and 52201137)the Opening Project of Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology(No.ASMA202205)+1 种基金the Student Research and Innovation Fund of the Fundamental Research Funds for the Central Universities(No.3072022GIP1004)the Beijing Municipal Natural Science Foundation(No.2202004).
文摘It is a long-term challenge to further improve the corrosion resistance while ensuring the strength of magnesium(Mg)alloys.Revealing the effect of potential fluctuation on the micro-galvanic corrosion and the subsequent film formation is important for understanding the corrosion mechanism of Mg alloys with multiple strengthening phases/structures.Here,we prepared the high-strength Mg-14.4Er-1.44Zn-0.3Zr(wt.%)alloys containing hybrid structures,i.e.,elongated long-period stacking ordered(LPSO)blocks+intragranular stacking faults(SFs)/LPSO lamellae.The Mg alloy with elongated LPSO blocks and intragranular LPSO lamellae(EZ-500 alloy)obtains good corrosion resistance(2.2 mm y^(–1)),while the Mg alloy containing elongated LPSO blocks and intragranular SFs(EZ-400 alloy)shows a significantly higher corrosion rate(6.9 mm y^(–1)).The results of scanning Kelvin probe force microscopy(SKPFM)show the elongated LPSO blocks act as cathode phase(87 mV in EZ-400 alloy),and the SFs serve as the weak anode(30 mV in EZ-400 alloy),resulting in high potential fluctuation in EZ-400 alloy.On the contrary,both elongated blocks and intragranular lamellae are cathodic LPSO phase(67–69 mV)in EZ-500 alloy,leading to a lower potential fluctuation.Quasi in-situ atomic force microscope(AFM)observation indicates that high potential fluctuation would cause strong micro-galvanic corrosion,and subsequently leads to the failure in rapid formation of corrosion film,finally forming a loose and porous film,while relatively low potential fluctuation could result in more uniform corrosion mode and facilitate the rapid formation of protective film.Therefore,we propose that it is an effective way to develop high-strength corrosionresistant Mg alloys by controlling the potential fluctuation to form a“uniform potential”strengthening microstructure。