FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results sho...FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results show that adding proper content FVS1212 powders can improve the tensile strength of FVS0812 aluminum at room temperature and elevated temperature, and that the elongation of FVS1212/FVS0812 material is better than that of FVS1212 aluminum.展开更多
A novel powder metallurgy (P/M) material with high wear resistance is developed in order to decrease the wear and lubricant-leakage of a diesel engine valve guide. The friction and wear tests of this material are co...A novel powder metallurgy (P/M) material with high wear resistance is developed in order to decrease the wear and lubricant-leakage of a diesel engine valve guide. The friction and wear tests of this material are conducted. It indicates that the wear resistance of the newly developed P/M material has been improved and much better than that of the formerly used alloy steel. Moreover, three different sealing structures are designed and theoretically analyzed with respect to the characteristic of hydrodynamic sealing. Through comparative experiments of component leakage and engine run-in for different valve guide structures, it proves that the structure with a machined sealing groove but not installed with a seal-ring cannot only reduce the specific lubricant consumption (SLC) of cylinder head, but also decrease the wear of valve stern and valve guide.展开更多
文摘FVS1212/FVS0812 material was prepared by adding FVS1212 powder into FVS0812 powder. The structure and mechanical properties of materials were studied by means of X-Ray, tensile measurement, OM and SEM. The results show that adding proper content FVS1212 powders can improve the tensile strength of FVS0812 aluminum at room temperature and elevated temperature, and that the elongation of FVS1212/FVS0812 material is better than that of FVS1212 aluminum.
基金This project is supported by National Natural Science Foundation ofChina(No.50135020), Key Science and Technology Research Project ofMinistry of Education, China (No.0203) and Provincial Science and Tech-nology Plan of Guangdong, China (No.2004B10301018).
文摘A novel powder metallurgy (P/M) material with high wear resistance is developed in order to decrease the wear and lubricant-leakage of a diesel engine valve guide. The friction and wear tests of this material are conducted. It indicates that the wear resistance of the newly developed P/M material has been improved and much better than that of the formerly used alloy steel. Moreover, three different sealing structures are designed and theoretically analyzed with respect to the characteristic of hydrodynamic sealing. Through comparative experiments of component leakage and engine run-in for different valve guide structures, it proves that the structure with a machined sealing groove but not installed with a seal-ring cannot only reduce the specific lubricant consumption (SLC) of cylinder head, but also decrease the wear of valve stern and valve guide.