Objective Currently, powdered Chinese herbal medicines (CHMs) were mainly evaluated through physical property, chemical dissolution, and bioactivity independently. It could not reflect the quality comprehensively. T...Objective Currently, powdered Chinese herbal medicines (CHMs) were mainly evaluated through physical property, chemical dissolution, and bioactivity independently. It could not reflect the quality comprehensively. This paper was to explore and establish a comprehensive evaluation method for powdered CHMs. Methods Isatidis Radixwas chosen as an exemple. Firstly, powdered Isatidis Radixin different particle size was prepared. Then, their physical properties were characterized. The dissolution of index component epigoitrin was determined, and their antiviral activities were evaluated by neuraminidase-based bioassay. Results As the particle size decreased, powder distribution tended to be uniform, and the dissolution of epigoitrin increased, antiviral activity enhanced. According to cluster analysis of above results, the sequence of evaluation consequence was ultrafine powder S2 (D90:32.80± 0.29) 〉 ultrafine powder S1 (D90:52.08 ± 0.53) 〉 fine powder SO (D90:118.16± 0.76) (from the superior to the inferior). Conclusion Overall, the comprehensive evaluation for powdered CHMs based on the physical characterization, chemical dissolution, and bioassay could not only be used to evaluate powdered herbs, but also guide the screening and optimization of the particle size of powder.展开更多
基金National Natural Science Foundation of China(81473316)
文摘Objective Currently, powdered Chinese herbal medicines (CHMs) were mainly evaluated through physical property, chemical dissolution, and bioactivity independently. It could not reflect the quality comprehensively. This paper was to explore and establish a comprehensive evaluation method for powdered CHMs. Methods Isatidis Radixwas chosen as an exemple. Firstly, powdered Isatidis Radixin different particle size was prepared. Then, their physical properties were characterized. The dissolution of index component epigoitrin was determined, and their antiviral activities were evaluated by neuraminidase-based bioassay. Results As the particle size decreased, powder distribution tended to be uniform, and the dissolution of epigoitrin increased, antiviral activity enhanced. According to cluster analysis of above results, the sequence of evaluation consequence was ultrafine powder S2 (D90:32.80± 0.29) 〉 ultrafine powder S1 (D90:52.08 ± 0.53) 〉 fine powder SO (D90:118.16± 0.76) (from the superior to the inferior). Conclusion Overall, the comprehensive evaluation for powdered CHMs based on the physical characterization, chemical dissolution, and bioassay could not only be used to evaluate powdered herbs, but also guide the screening and optimization of the particle size of powder.