分析了延误航班地面等待成本差异产生的原因,结合航班实际运行情况,构建不同供电模式下、不同旅客等待环境下的航班地面等待成本模型.以A320和B747主流运输机型为例,讨论了航班地面等待时使用机载APU(Auxiliary Power Unit)和桥载设备...分析了延误航班地面等待成本差异产生的原因,结合航班实际运行情况,构建不同供电模式下、不同旅客等待环境下的航班地面等待成本模型.以A320和B747主流运输机型为例,讨论了航班地面等待时使用机载APU(Auxiliary Power Unit)和桥载设备提供电源和气源的成本变化,以及模型中各子成本比例的变化趋势;分析了旅客在候机楼和客舱等待时延误成本差异,以及不同机型使用桥载设备的成本优化.仿真结果表明,延误航班地面等待时使用桥载设备比APU更经济,能有效地推迟为降低延误成本而卸客的时间.根据等待时间合理地安排旅客等待环境,选择经济的桥载设备对优化延误航班的地面等待成本有重要意义.展开更多
文摘分析了延误航班地面等待成本差异产生的原因,结合航班实际运行情况,构建不同供电模式下、不同旅客等待环境下的航班地面等待成本模型.以A320和B747主流运输机型为例,讨论了航班地面等待时使用机载APU(Auxiliary Power Unit)和桥载设备提供电源和气源的成本变化,以及模型中各子成本比例的变化趋势;分析了旅客在候机楼和客舱等待时延误成本差异,以及不同机型使用桥载设备的成本优化.仿真结果表明,延误航班地面等待时使用桥载设备比APU更经济,能有效地推迟为降低延误成本而卸客的时间.根据等待时间合理地安排旅客等待环境,选择经济的桥载设备对优化延误航班的地面等待成本有重要意义.