BACKGROUND Severely elevated intracranial pressure due to various reasons,such as decreased cerebral perfusion,can lead to devastating neurological outcomes,such as brain herniation.Decompression craniectomy is a life...BACKGROUND Severely elevated intracranial pressure due to various reasons,such as decreased cerebral perfusion,can lead to devastating neurological outcomes,such as brain herniation.Decompression craniectomy is a life-saving procedure that is commonly performed for such a critical situation,but the changes in cerebral microvessels after brain herniation and decompression are unclear.Ultrafast power Doppler imaging(uPDI)is a new microvascular imaging technology that utilizes high frame rate plane/diverging wave transmission and advanced clutter filters.uPDI significantly improves Doppler sensitivity and can detect microvessels,which are usually invisible using traditional ultrasound Doppler imaging.CASE SUMMARY In this report,uPDI was used for the first time to observe the brain blood flow of a hypoperfusion area in a 4-year-old girl who underwent decompression craniectomy due to refractory intracranial hypertension(ICP)after malignant brain tumor surgery.B-mode imaging was used to verify the increased densities of the cerebral cortex and basal ganglia that were observed by computed tomography.CONCLUSION uPDI showed the local blood supplies and anatomical structures of the patient after decompressive craniectomy.uPDI is potentially a more intuitive and noninvasive method for evaluating the effects of severe ICP on cerebral microvessels.展开更多
文摘BACKGROUND Severely elevated intracranial pressure due to various reasons,such as decreased cerebral perfusion,can lead to devastating neurological outcomes,such as brain herniation.Decompression craniectomy is a life-saving procedure that is commonly performed for such a critical situation,but the changes in cerebral microvessels after brain herniation and decompression are unclear.Ultrafast power Doppler imaging(uPDI)is a new microvascular imaging technology that utilizes high frame rate plane/diverging wave transmission and advanced clutter filters.uPDI significantly improves Doppler sensitivity and can detect microvessels,which are usually invisible using traditional ultrasound Doppler imaging.CASE SUMMARY In this report,uPDI was used for the first time to observe the brain blood flow of a hypoperfusion area in a 4-year-old girl who underwent decompression craniectomy due to refractory intracranial hypertension(ICP)after malignant brain tumor surgery.B-mode imaging was used to verify the increased densities of the cerebral cortex and basal ganglia that were observed by computed tomography.CONCLUSION uPDI showed the local blood supplies and anatomical structures of the patient after decompressive craniectomy.uPDI is potentially a more intuitive and noninvasive method for evaluating the effects of severe ICP on cerebral microvessels.