目的计算分子筛制氧机制取富氧气体的单位能耗,评价其实际运行成本。方法通过空气压缩机机组输入比功率和分子筛输入输出比,计算理论耗电量,然后根据对卸载、干燥等实际影响因素的分析,计算各因素对耗电量的影响因子,并通过实际测试进...目的计算分子筛制氧机制取富氧气体的单位能耗,评价其实际运行成本。方法通过空气压缩机机组输入比功率和分子筛输入输出比,计算理论耗电量,然后根据对卸载、干燥等实际影响因素的分析,计算各因素对耗电量的影响因子,并通过实际测试进行验证。结果在理想状态下制取1 m3富氧气体,耗电量为1.54-1.87 k Wh;在不考虑增压机耗电量的情况下,分子筛制氧机制取1 m3富氧气体的实际耗电量不低于2 k Wh。结论分子筛制氧机单位能耗大,更适用于使用汇流排供氧的医院。展开更多
作为飞机环控系统与主发动机起动的气源,以目前广泛应用的带负载压气机结构APU(Auxiliary Power Unit)为研究对象,进行引气特性计算模型与计算方法研究。首先介绍了APU结构与引气工作特点,然后分析了建模时喘振控制阀SCV(Surge Control ...作为飞机环控系统与主发动机起动的气源,以目前广泛应用的带负载压气机结构APU(Auxiliary Power Unit)为研究对象,进行引气特性计算模型与计算方法研究。首先介绍了APU结构与引气工作特点,然后分析了建模时喘振控制阀SCV(Surge Control Valve)控制方法与APU共同工作机理,最后采用部件法建立了该类型APU引气计算数学模型。以某型APU为对象进行数值仿真并与实际试车数据比较,计算误差小于3%,表明所采用的建模方法是正确的,所建立的模型能够满足工程需求。展开更多
文摘目的计算分子筛制氧机制取富氧气体的单位能耗,评价其实际运行成本。方法通过空气压缩机机组输入比功率和分子筛输入输出比,计算理论耗电量,然后根据对卸载、干燥等实际影响因素的分析,计算各因素对耗电量的影响因子,并通过实际测试进行验证。结果在理想状态下制取1 m3富氧气体,耗电量为1.54-1.87 k Wh;在不考虑增压机耗电量的情况下,分子筛制氧机制取1 m3富氧气体的实际耗电量不低于2 k Wh。结论分子筛制氧机单位能耗大,更适用于使用汇流排供氧的医院。
文摘作为飞机环控系统与主发动机起动的气源,以目前广泛应用的带负载压气机结构APU(Auxiliary Power Unit)为研究对象,进行引气特性计算模型与计算方法研究。首先介绍了APU结构与引气工作特点,然后分析了建模时喘振控制阀SCV(Surge Control Valve)控制方法与APU共同工作机理,最后采用部件法建立了该类型APU引气计算数学模型。以某型APU为对象进行数值仿真并与实际试车数据比较,计算误差小于3%,表明所采用的建模方法是正确的,所建立的模型能够满足工程需求。