期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Dynamic software allocation algorithm for saving power in pervasive computing
1
作者 韩松乔 张申生 +1 位作者 张勇 曹健 《Journal of Southeast University(English Edition)》 EI CAS 2007年第2期216-220,共5页
A novel dynamic software allocation algorithm suitable for pervasive computing environments is proposed to minimize power consumption of mobile devices. Considering the power cost incurred by the computation, communic... A novel dynamic software allocation algorithm suitable for pervasive computing environments is proposed to minimize power consumption of mobile devices. Considering the power cost incurred by the computation, communication and migration of software components, a power consumption model of component assignments between a mobile device and a server is set up. Also, the mobility of components and the mobility relationships between components are taken into account in software allocation. By using network flow theory, the optimization problem of power conservation is transformed into the optimal bipartition problem of a flow network which can be partitioned by the max-flow rain-cut algorithm. Simulation results show that the proposed algorithm can save si^nificantlv more energy than existing algorithms. 展开更多
关键词 power aware software allocation code mobility graph theory pervasive computing
下载PDF
Curvature Quantified Douglas-Peucker-based Phasor Measurement Unit Data Compression Method for Power System Situational Awareness
2
作者 Weitao Tan Tianhan Zhang +3 位作者 Yuanqian Ma Shengyuan Liu Li Yang Zhenzhi Lin 《Protection and Control of Modern Power Systems》 SCIE EI 2024年第2期128-137,共10页
Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This l... Facing constraints imposed by storage and bandwidth limitations,the vast volume of phasor meas-urement unit(PMU)data collected by the wide-area measurement system(WAMS)for power systems cannot be fully utilized.This limitation significantly hinders the effective deployment of situational awareness technologies for systematic applications.In this work,an effective curvature quantified Douglas-Peucker(CQDP)-based PMU data compression method is proposed for situational awareness of power systems.First,a curvature integrated distance(CID)for measuring the local flection and fluc-tuation of PMU signals is developed.The Doug-las-Peucker(DP)algorithm integrated with a quan-tile-based parameter adaptation scheme is then proposed to extract feature points for profiling the trends within the PMU signals.This allows adaptive adjustment of the al-gorithm parameters,so as to maintain the desired com-pression ratio and reconstruction accuracy as much as possible,irrespective of the power system dynamics.Fi-nally,case studies on the Western Electricity Coordinat-ing Council(WECC)179-bus system and the actual Guangdong power system are performed to verify the effectiveness of the proposed method.The simulation results show that the proposed method achieves stably higher compression ratio and reconstruction accuracy in both steady state and in transients of the power system,and alleviates the compression performance degradation problem faced by existing compression methods.Index Terms—Curvature quantified Douglas-Peucker,data compression,phasor measurement unit,power sys-tem situational awareness. 展开更多
关键词 Curvature quantified Douglas-Peucker data compression phasor measurement unit power sys-tem situational awareness
原文传递
ROPAS:Cross-Layer Cognitive Architecture for Mobile UWB Networks
3
作者 Chittabrata Ghosh Dharma P.Agrawal 《Journal of Computer Science & Technology》 SCIE EI CSCD 2008年第3期413-425,共13页
The allocation of bandwidth to unlicensed users, without significantly increasing the interference on the existing licensed users, is a challenge for Ultra Wideband (UWB) networks. Our research work presents a novel... The allocation of bandwidth to unlicensed users, without significantly increasing the interference on the existing licensed users, is a challenge for Ultra Wideband (UWB) networks. Our research work presents a novel Rake Optimization and Power Aware Scheduling (ROPAS) architecture for UWB networks. Since UWB communication is rich in multipath effects, a Rake receiver is used for path diversity. Our idea of developing an optimized Rake receiver in our ROPAS architecture stems from the intention of reducing the computation complexity in terms of the number of multiplications and additions needed for the weight derivation attached to each finger of the Rake receiver. Our proposed work uses the Cognitive Radio (CR) for dynamic channel allocation among the requesting users while limiting the average power transmitted in each sub-band. In our proposed novel ROPAS architecture, dynamic channel allocation is achieved by a CR-based cross-layer design between the PHY and Medium Access Control (MAC) layers. Additionally, the maximum number of parallel transmissions within a frame interval is formulated as an optimization problem. This optimal decision is based on the distance parameter between a transmitter-receiver pair, bit error rate and frequency of request by a particular application. Moreover, the optimization problem improvises a differentiation technique among the requesting applications by incorporating priority levels among user applications. This provides fairness and higher throughput among services with varying power constraint and data rates required for a UWB network. 展开更多
关键词 cognitive radio joint power and frequency allocation power aware scheduling primary and secondary users ultra wideband
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部