The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.Howeve...The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes.展开更多
Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a sma...Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed.展开更多
文摘The body channel based wireless power transfer(BC-WPT)method utilizes the human body as the medium to transfer power for bioelectronics,which can achieve a lower transmission loss due to its higher conductivity.However,except for the channel length,different on-body loca-tions of the transmitter and receiver also influence the power supply performance.This paper fo-cuses on the wrist-to-forehead path to show the potential of BC-WPT for the brain bioelectronics such as the brain computer interface device.The channel characteristics from 10 MHz to 60 MHz are measured by a vector network analyzer(VNA)and a prototype BC-WPT system with differ-ent copper electrodes and the lowest power loss locates between-22 dB and-33 dB.Furthermore,the minimum path loss limit is simulated in Advanced Design System(ADS)software and the low-est optimum path loss can reach nearly-13 dB.Finally,a rectifier circuit is also built at the receiv-er side to harvest d.c.voltage.The results show that the open-circuit voltage(OCV)can reach 1.75 V with the transmitter of 50Ωoutput impedance supplying 5V_(pp)sine voltage at 60 MHz when adopt-ing 1 cm-diameter circular electrodes.
基金supported by the National Natural Science Foundation of China (No.61074165 and No.61273064)Jilin Provincial Science & Technology Department Key Scientific and Technological Project (No.20140204034GX)Jilin Province Development and Reform Commission Project (No.2015Y043)
文摘Wireless Body Area Network(WBAN) is an emerging technology to provide real-time health monitoring and ubiquitous healthcare services. In many applications, multiple wireless body area networks have to coexist in a small area, resulting in serious inter-network interference. This not only reduces network reliability that is especially important in emergency medical applications, but also consumes more power of WBANs. In this paper, an inter-network interference mitigation approach based on a power control algorithm is proposed. Power control is modeled as a non-cooperative game, in which both inter-network interference and energy efficiency of WBANs are considered. The existence and uniqueness of Nash Equilibrium in the game are proved, and an optimal scheme based on best response is proposed to find its Nash Equilibrium. By coordinating the transmission power levels among networks under interference environment, the total system throughput can be increased with minimum power consumed. The effectiveness of the proposed method has been illustrated by simulation results, where the performance of the proposed approach is evaluated in terms of overall utility and power efficiency and convergence speed.