All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structure...All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device.展开更多
The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 ...The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model.展开更多
A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of...A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.展开更多
Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such ...Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module.展开更多
Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter....Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.展开更多
It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentra...It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span>展开更多
A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion e...A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes.展开更多
The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethyli...The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one(IC)end group or its derivatives,leading to low molecular weight,and thus reduce active layer mechanical properties.Herein,a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight,favorable intermolecular interaction,and improved physicochemical properties.Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m,regiorandom PY2Se-Cl-ran has a similar absorption profile,moderate lowest unoccupied molecular orbital level,and favorable intermolecular packing and crystallization properties.Moreover,the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency(PCE)of 16.23% in all-polymer solar cells(all-PSCs)due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology,while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability,which are all crucial for potential practical applications of all-PSCs in wearable electronics.To date,the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs.Our work provides a new perspective to develop efficient all-PSCs,with all high active layer ductility,impressive PCE,and excellent device stability,towards practical applications.展开更多
We study a radio frequency(RF) wireless energy transfer(WET) enabled multiple input multiple output(MIMO) system. A time slotted transmission pattern is considered. Each slot can be divided into two phases, downlink(D...We study a radio frequency(RF) wireless energy transfer(WET) enabled multiple input multiple output(MIMO) system. A time slotted transmission pattern is considered. Each slot can be divided into two phases, downlink(DL) WET and uplink(UL) wireless information transmission(WIT). Since energy conversion efficiency of the energy harvesting circuits are non.linear, the conventional linear model leads to a mismatch for resource allocation. In this paper, the power allocation algorithm considering the practical non.linear energy harvesting circuits is studied. The optimization problem is formulated to maximize the energy efficiency of system with multiple constraints, i.e., the transmission power, the received power and the minimum harvested energy, which is a non.convex problem. We transform the objective function from fractional form into an equivalent objective function in subtractive form and provide an iterative power allocation algorithm to achieve the optimal solution. Numerical results show that our proposed algorithm with the non.linear RF energy conversion models can achieve much better performance than the algorithm with the conventional linear model.展开更多
All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of pol...All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of polymer-based OSCs,more efforts are needed to devote to improving the performance of ASM OSCs to close the performance gap between ASM and polymer-based OSCs.Herein,a well-known p-dopant named fluoro-7,7,8,8-tetracyano-p-quinodimethane(FTCNQ)was introduced to a highefficiency system of HD-1:BTP-e C9,and a high power conversion efficiency(PCE)of 17.15%was achieved due to the improved electrical properties as well as better morphology of the active layer,supported by the observed higher fill factor(FF)of 79.45%and suppressed non-radiative recombination loss.Furthermore,combining with the further morphology optimization from solvent additive of 1-iodonaphthalene(IN)in the blend film,the HD-1:BTP-e C9-based device with the synergistic effects of both FTCNQ and IN demonstrates a remarkable PCE of 17.73%(certified as 17.49%),representing the best result of binary ASM OSCs to date.展开更多
A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydrauli...A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.展开更多
Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-...Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-based polymer acceptors. To expand structural diversity of the polymer acceptors, herein,two polymer acceptors PSF-IDIC and PSi-IDIC with extended fused ring p skeleton are developed by copolymerization of 2,20-((2 Z,20 Z)-((4,4,9,9-tetrahexadecyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithio phene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile(IDIC-C16) block with sulfur(S) and fluorine(F) functionalized benzodithiophene(BDT) unit and silicon(Si) atom functionalized BDT unit, respectively. Both polymer acceptors exhibit strong light absorption.The PSF-IDIC exhibits similar energy levels and slightly higher absorption coefficient relative to the PSi-IDIC. After blended with the donor polymer PM6, the functional atoms on the polymer acceptors show quite different effect on the device performance. Both of the acceptors deliver a notably high open circuit voltage(V_(OC)) of the devices, but PSi-IDIC achieves higher V OCthan PSF-IDIC. All-PSC based on PM6:PSi-IDIC attains a power conversion efficiency(PCE) of 8.29%, while PM6:PSF-IDIC-based device achieves a much higher PCE of 10.18%, which is one of the highest values for the all-PSCs reported so far. The superior device performance of PM6:PSF-IDIC is attributed to its higher exciton dissociation and charge transport, decreased charge recombination, and optimized morphology than PM6:PSi-IDIC counterpart. These results suggest that optimizing the functional atoms of the side chain provide an effective strategy to develop high performance polymer acceptors for all-PSCs.展开更多
All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial appli...All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial application.Herein,we demonstrate that high efficiency and exceptional long-term stability are realized by incorporating gadolinium(III)chloride(GdCl_(3))into the CsPbI_(2)Br perovskite film.The incorporation of GdCl_(3) enhances the Goldschmidt tolerance factor of CsPbI_(2)Br perovskite,yielding a dense perovskite film with small grains,thus the a-phase CsPbI_(2)Br is remarkably stabilized.Additionally,it is found that the GdCl_(3)-incorporated perovskite film achieves suppressed charge recombination and appropriate energy level alignment compared with the pristine CsPbI_(2)Br film.The noticeable increment in efficiency from14.01%(control PSC)to 16.24%is achieved for GdCl_(3)-incorporated PSC.Moreover,the nonencapsulated GdCl_(3)-incorporated PSC exhibits excellent environmental and thermal stability,remaining over 91%or90%of the original efficiency after 1200 h aging at 40%relative humidity or 480 h heating at 85℃ in nitrogen glove box respectively.The encapsulated GdCl_(3)-incorporated PSC presents an improved operational stability with over 88%of initial efficiency under maximum power point(MPP)tracking at 45℃ for1000 h.This work presents an effective ion-incorporation approach for boosting efficiency and long-term stability of all-inorganic PSCs.展开更多
CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the...CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the modified QDSCs was approximately 0.04 V higher than that of plain CdSe QDSCs, consequently improving the photovoltaic performance of the resulting QDSCs. Served as a novel coating on the CdSe QD sensitized photoanode, GQDs played a vital role in improving Voc due to the suppressed charge recombination which has been confirmed by electron impedance spectroscopy as well as transient photovoltage decay measure- ments. Moreover, different adsorption sequences, concentration and deposition time of GQDs have also been systematically investigated to boost the power conversion efficiency (PCE) of CdSe QDSCs. After the coating of CdSe with GQDs, the resulting champion CdSe QDSCs exhibited an improved PCE of 6.59% under AM 1.5G full one sun illumination.展开更多
Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conver...Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process.展开更多
The efficiency of photovoltaic power generation is affected by the changeable weather conditions. This paper improves the efficiency of a standalone PV system over a wider range of operating conditions by employing no...The efficiency of photovoltaic power generation is affected by the changeable weather conditions. This paper improves the efficiency of a standalone PV system over a wider range of operating conditions by employing novel switch adaptive control to an interleaved boost converter. With various loads, simulation and experimental results show that the interleaved boost converter with novel switch adaptive control offers better performance and higher conversion efficiency under changeable weather conditions.展开更多
Efficiency enhancement of Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) solar cell devices was performed by using iso-butyl ammonium iodide(IBA)passivated on Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) films.The n-i-p structure of pero...Efficiency enhancement of Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) solar cell devices was performed by using iso-butyl ammonium iodide(IBA)passivated on Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) films.The n-i-p structure of perovskite solar cell devices was fabricated with the structure of FTO/SnO_(2)/Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3)(FTO,i.e.,fluorine doped tin oxide)and IBA/Spiro-OMeTAD/Ag.The effect of different weights of IBA passivated on Cs-doped perovskite solar cells(PSCs)was systematically investigated and compared with non-passivated devices.It was found that the 5-mg IBA-passivated devices exhibited a high power conversion efficiency(PCE)of 15.49%higher than 12.64%of non-IBA-passivated devices.The improvement of photovoltaic parameters of the 5-mg IBA-passivated device can be clearly observed compared to the Cs-doped device.The better performance of the IBA-passivated device can be confirmed by the reduction of PbI_(2) phase in the crystal structure,lower charge recombination rate,lower charge transfer resistance,and improved contact angle of perovskite films.Therefore,IBA passivation on Cs_(0.1)(CH_(3)NH)_(0.9)PbI_(3) is a promising technique to improve the efficiency of Cs-doped perovskite solar cells.展开更多
Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precu...Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precursor concentration in the coating sol, can indeed enhance the performance of the DSSC. The measured power conversion efficiency shows a maximum around the precursor concentration 0.1 M and falls down sharply to 0% beyond this point. The results are interpreted on the basis of two competing factors: At ZnO concentrations less than 0.1 M, the formation of an energy barrier increases the photocurrent by reducing the rate of interfacial back-recombination. At ZnO concentrations greater than 0.1 M, the screening of the TiO2 film by thicker ZnO layers decreases the photocurrent through the reduction of TiO2 dye-adsorption efficiency.展开更多
Organic solar cells (OSCs) have advantages like light-weight, flexibility, colorfulness and solution processability [1 ]. The active layer of OSCs generally contains two organic semiconductors: an electron donor an...Organic solar cells (OSCs) have advantages like light-weight, flexibility, colorfulness and solution processability [1 ]. The active layer of OSCs generally contains two organic semiconductors: an electron donor and an electron acceptor. The donor and acceptor make nanoscale phase separation to allow efficient exciton dissociation and also form a three-dimensional (3D) passage to rapidly transfer free charge carriers to respective electrodes.展开更多
基金supported by the Key Research and Development Program of Hubei Province(2023BAB116)the National Natural Science Foundation of China(52203238,52273196,52073221)the Fundamental Research Funds for the Central Universities of China(WUT:2021III016JC).
文摘All polymer solar cells(all-PSCs)promise mechanically-flexible and morphologically-stable organic photovoltaics and have aroused increased interests very recently.However,due to their disorderly conformation structures within the photoactive film,inefficient charge generation and carrier transport are observed which lead to inferior photovoltaic performance compared to smaller molecular acceptor-based photovoltaics.Here,by diluting PM6 with a cutting-edge polymeric acceptor PY-IT and diluting PY-IT with PM6 or D18,donor-dominating or acceptor-dominating heterojunctions were prepared.Synchrotron X-ray and multiple spectrometer techniques reveal that the diluted heterojunctions receive increased structural order,translating to enhanced carrier mobility,improved exciton diffusion length,and suppressed non-radiative recombination loss during the power conversion.As the results,the corresponding PM6+1%PY-IT/PY-IT+1%D18 and PM6+1%PY-IT/PY-IT+1%PM6 devices fabricated by layer-by-layer deposition received superior power conversion efficiency(PCE)of 19.4%and 18.8%respectively,along with enhanced operational lifetimes in air,outperforming the PCE of 17.5%in the PM6/PY-IT reference device.
基金supported by the National Natural Science Foundation of China(Grant Nos.61222501 and 61335004)the Specialized Research Fund for the Doctoral Program of Higher Education of China(Grant No.20111103110019)
文摘The maximum power conversion efficiencies of the top-emitting,oxide-confined,two-dimensional integrated 2×2 and4×4 vertical-cavity surface-emitting laser(VCSEL) arrays with the oxide-apertures of 6 μm,16 μm,19 μm,26 μm,29 μm,36 μm,39 μm,and 46 urn are fabricated and characterized,respectively.The maximum power conversion efficiencies increase rapidly with the augment of oxide-aperture at the beginning and then decrease slowly.A maximum value of27.91%at an oxide-aperture of 18.6 μm is achieved by simulation.The experimental data are well consistent with the simulation results,which are analyzed by utilizing an empirical model.
文摘A three-dimensional approach to the effect of magnetic field incidence angle on electrical power and conversion efficiency is performed on a front-illuminated polycrystalline silicon bifacial solar cell. A solution of the continuity equation allowed us to present the equations of photocurrent density, photovoltage and electric power. The influence of the angle of incidence of the magnetic field on the photocurrent density, the photovoltage and the electric power has been studied. The curves of electrical power versus dynamic junction velocity were used to extract the values of maximum electrical power and dynamic junction velocity and to calculate those of conversion efficiency. From this study, it is found that the conversion efficiency values increase with the angle of incidence of the magnetic field.
基金financial support from various entities,including the Foundation of Anhui Science and Technology University[HCYJ202201]the Anhui Science and Technology University’s Student Innovation and Entrepreneurship Training Program[S202310879115,202310879053]+4 种基金the Key Project of Natural Science Research in Anhui Science and Technology University[2021ZRZD07]the Chuzhou Science and Technology Project[2021GJ002]the Anhui Province Key Research and Development Program[202304a05020085]the Natural Science Research Project of Anhui Educational Committee[2023AH051877]The Opening Project of State Key Laboratory of Advanced Technology for Float Glass[2020KF06,2022KF06]。
文摘Perovskite solar cells(PSCs)have emerged as a promising photovoltaic technology because of their high light absorption coefficient,long carrier diffusion distance,and tunable bandgap.However,PSCs face challenges such as hysteresis effects and stability issues.In this study,we introduced a novel approach to improve film crystallization by leveraging 4-tert-butylpyridine(TBP)molecules,thereby enhancing the performance and stability of PSCs.Our findings demonstrate the effective removal of PbI_(2)from the perovskite surface through strong coordination with TBP molecules.Additionally,by carefully adjusting the concentration of the TBP solution,we achieved enhanced film crystallinity without disrupting the perovskite structure.The TBP-treated perovskite films exhibit a low defect density,improved crystallinity,and improved carrier lifetime.As a result,the PSCs manufactured with TBP treatment achieve power conversion efficiency(PCE)exceeding 24%.Moreover,we obtained the PCE of 21.39%for the 12.25 cm^(2)module.
基金the financial support from the National Natural Science Foundation of China(grant numbers 11922507,12050005,52002140)Fundamental Research Funds for the Central Universities(2020kfyXJJS008)+1 种基金Major State Basic Research Development Program of China(2021YFB3201000)Young Elite Scientists Sponsorship Program by CAST
文摘Radio-photovoltaic cell is a micro nuclear battery for devices operating in extreme environments,which converts the decay energy of a radioisotope into electric energy by using a phosphor and a photovoltaic converter.Many phosphors with high light yield and good environmental stability have been developed,but the performance of radio-photovoltaic cells remains far behind expectations in terms of power density and power conversion efficiency,because of the poor photoelectric conversion efficiency of traditional photovoltaic converters under low-light conditions.This paper reports an radio-photovoltaic cell based on an intrinsically stable formamidinium-cesium perovskite photovoltaic converter exhibiting a wide light wavelength response from 300 to 800 nm,high open-circuit voltage(V_(oc)),and remarkable efficiency at low-light intensity.When a He ions accelerator is adopted as a mimickedαradioisotope source with an equivalent activity of 0.83 mCi cm^(-2),the formamidinium-cesium perovskite radio-photovoltaic cell achieves a V_(oc)of 0.498 V,a short-circuit current(J_(sc))of 423.94 nA cm^(-2),and a remarkable power conversion efficiency of 0.886%,which is 6.6 times that of the Si reference radio-photovoltaic cell,as well as the highest among all radio-photovoltaic cells reported so far.This work provides a theoretical basis for enhancing the performance of radio-photovoltaic cells.
文摘It is well known that temperature acts negatively on practically all the parameters of photovoltaic solar cells. Also, the solar cells which are subjected to particularly very high temperatures are the light concentration solar cells and are used in light concentration photovoltaic systems (<i><span style="font-family:Verdana;">CPV</span></i><span style="font-family:Verdana;">). In fact, the significant heating of these solar cells is due to the concentration of the solar flux which arrives on them. Light concentration solar cells appear as solar cells under strong influences of heating and temperature. It is therefore necessary to take into account temperature effect on light concentration solar cells performances in order to obtain realistic results. </span><span style="font-family:""><span style="font-family:Verdana;">This one-dimensional study of a crystalline silicon solar cell under light concentration takes into account electrons concentration gradient electric field in the determination of the continuity equation of minority carriers in the base. To determine excess minority carrier’s density, the effects of temperature on the diffusion and mobility of electrons and holes, on the intrinsic concentration of electrons, on carrier’s generation rate as well as on width of band gap have also been taken into account. The results show that an increase of temperature improves diffusion parameters and leads to an increase of the short-circuit photocurrent density. However, an increase of temperature leads to a significant decrease in open-circuit photovoltage, maximum electric power and conversion efficiency. The results also show that the operating point and the maximum power point (</span><i><span style="font-family:Verdana;">MPP</span></i><span style="font-family:Verdana;">) moves to the open circuit when the cell temperature increases.</span></span>
基金Supported by the National Natural Science Foundation of China under Grant No 11335003
文摘A polymeric nanopore membrane with selective ionic transport has been proposed as a potential device to convert the chemical potential energy in salinity gradients to electrical power. However, its energy conversion efficiency and power density are often limited due to the challenge in reliably controlling the size of the nanopores with the conventional chemical etching method. Here we report that without chemical etching, polyimide (PI) membranes irradiated with GeV heavy ions have negatively charged nanopores, showing nearly perfect selectivity for cations over anions, and they can generate electrical power from salinity gradients. We further demonstrate that the power generation efficiency of the PI membrane approaches the theoretical limit, and the maximum power density reaches 130m W/m2 with a modified etching method, outperforming the previous energy conversion device that was made of polymeric nanopore membranes.
基金National Natural Science Foundation of China,Grant/Award Numbers:21704082,21875182,22005121Key Scientific and Technological Innovation Team Project of Shaanxi Province,Grant/Award Number:2020TD‐002111 project 2.0,Grant/Award Number:BP2018008。
文摘The recently reported efficient polymerized small-molecule acceptors(PSMAs)usually adopt a regioregular backbone by polymerizing small-molecule acceptors precursors with a low-reactivity 5-brominated 3-(dicyanomethylidene)indan-1-one(IC)end group or its derivatives,leading to low molecular weight,and thus reduce active layer mechanical properties.Herein,a series of newly designed chlorinated PSMAs originating from isomeric IC end groups are developed by adjusting chlorinated positions and copolymerized sites on end groups to achieve high molecular weight,favorable intermolecular interaction,and improved physicochemical properties.Compared with regioregular PY2Se-Cl-o and PY2Se-Cl-m,regiorandom PY2Se-Cl-ran has a similar absorption profile,moderate lowest unoccupied molecular orbital level,and favorable intermolecular packing and crystallization properties.Moreover,the binary PM6:PY2Se-Cl-ran blend achieves better ductility with a crack-onset strain of 17.5% and improved power conversion efficiency(PCE)of 16.23% in all-polymer solar cells(all-PSCs)due to the higher molecular weight of PY2Se-Cl-ran and optimized blend morphology,while the ternary PM6:J71:PY2Se-Cl-ran blend offers an impressive PCE approaching 17% and excellent device stability,which are all crucial for potential practical applications of all-PSCs in wearable electronics.To date,the efficiency of 16.86% is the highest value reported for the regiorandom PSMAs-based all-PSCs and is also one of the best values reported for the all-PSCs.Our work provides a new perspective to develop efficient all-PSCs,with all high active layer ductility,impressive PCE,and excellent device stability,towards practical applications.
基金supported in part by National Natural Science Foundation of China (61372070)Natural Science Basic Research Plan in Shaanxi Province of China (2015JM6324)+2 种基金Ningbo Natural Science Foundation (2015A610117)Hong Kong, Macao and Taiwan Science & Technology Cooperation Program of China (2015DFT10160)the 111 Project (B08038)
文摘We study a radio frequency(RF) wireless energy transfer(WET) enabled multiple input multiple output(MIMO) system. A time slotted transmission pattern is considered. Each slot can be divided into two phases, downlink(DL) WET and uplink(UL) wireless information transmission(WIT). Since energy conversion efficiency of the energy harvesting circuits are non.linear, the conventional linear model leads to a mismatch for resource allocation. In this paper, the power allocation algorithm considering the practical non.linear energy harvesting circuits is studied. The optimization problem is formulated to maximize the energy efficiency of system with multiple constraints, i.e., the transmission power, the received power and the minimum harvested energy, which is a non.convex problem. We transform the objective function from fractional form into an equivalent objective function in subtractive form and provide an iterative power allocation algorithm to achieve the optimal solution. Numerical results show that our proposed algorithm with the non.linear RF energy conversion models can achieve much better performance than the algorithm with the conventional linear model.
基金supported by the Ministry of Science and Technology of the People’s Republic of China(Mo ST,2022YFB4200400,2019YFA0705900)the National Natural Science Foundation of China(21935007,52025033,51873089)+3 种基金Tianjin city(20JCZDJC00740,22JCQNJC00530)111 Project(B12015)the Fundamental Research Funds for the Central Universities,Nankai University(023-ZB22000105,020-ZB22000110,020-92220002)Haihe Laboratory of Sustainable Chemical Transformations。
文摘All-small organic solar cells(ASM OSCs)inherit the advantages of the distinct merits of small molecules,such as well-defined structures and less batch-to-batch variation.In comparison with the rapid development of polymer-based OSCs,more efforts are needed to devote to improving the performance of ASM OSCs to close the performance gap between ASM and polymer-based OSCs.Herein,a well-known p-dopant named fluoro-7,7,8,8-tetracyano-p-quinodimethane(FTCNQ)was introduced to a highefficiency system of HD-1:BTP-e C9,and a high power conversion efficiency(PCE)of 17.15%was achieved due to the improved electrical properties as well as better morphology of the active layer,supported by the observed higher fill factor(FF)of 79.45%and suppressed non-radiative recombination loss.Furthermore,combining with the further morphology optimization from solvent additive of 1-iodonaphthalene(IN)in the blend film,the HD-1:BTP-e C9-based device with the synergistic effects of both FTCNQ and IN demonstrates a remarkable PCE of 17.73%(certified as 17.49%),representing the best result of binary ASM OSCs to date.
基金supported by Marine Renewable Energy Funds Projects(Grant Nos.GHME2010GC01 and GHME2011BL06)
文摘A wave power device includes an energy harvesting system and a power take-off system. The power take-off system of a floating wave energy device is the key that converts wave energy into other forms. A set of hydraulic power take-off system, which suits for the floating wave energy devices, includes hydraulic system and power generation system. The hydraulic control system uses a special“self-hydraulic control system”to control hydraulic system to release or save energy under the maximum and the minimum pressures. The maximum pressure is enhanced to 23 MPa, the minimum to 9 MPa. Quite a few experiments show that the recent hydraulic system is evidently improved in efficiency and reliability than our previous one, that is expected to be great significant in the research and development of our prototype about wave energy conversion.
基金the National Natural Science Foundation of China (NSFC) (51673092, 51973087 and 21762029) for financial support。
文摘Polymer acceptors based on extended fused ring p skeleton has been proven to be promising candidates for all-polymer solar cells(all-PSCs), due to their remarkable improved light absorption than the traditional imide-based polymer acceptors. To expand structural diversity of the polymer acceptors, herein,two polymer acceptors PSF-IDIC and PSi-IDIC with extended fused ring p skeleton are developed by copolymerization of 2,20-((2 Z,20 Z)-((4,4,9,9-tetrahexadecyl-4,9-dihydro-s-indaceno [1,2-b:5,6-b']dithio phene-2,7-diyl)bis(methanylylidene))bis(3-oxo-2,3-dihydro-1 H-indene-2,1-diylidene))dimalononitrile(IDIC-C16) block with sulfur(S) and fluorine(F) functionalized benzodithiophene(BDT) unit and silicon(Si) atom functionalized BDT unit, respectively. Both polymer acceptors exhibit strong light absorption.The PSF-IDIC exhibits similar energy levels and slightly higher absorption coefficient relative to the PSi-IDIC. After blended with the donor polymer PM6, the functional atoms on the polymer acceptors show quite different effect on the device performance. Both of the acceptors deliver a notably high open circuit voltage(V_(OC)) of the devices, but PSi-IDIC achieves higher V OCthan PSF-IDIC. All-PSC based on PM6:PSi-IDIC attains a power conversion efficiency(PCE) of 8.29%, while PM6:PSF-IDIC-based device achieves a much higher PCE of 10.18%, which is one of the highest values for the all-PSCs reported so far. The superior device performance of PM6:PSF-IDIC is attributed to its higher exciton dissociation and charge transport, decreased charge recombination, and optimized morphology than PM6:PSi-IDIC counterpart. These results suggest that optimizing the functional atoms of the side chain provide an effective strategy to develop high performance polymer acceptors for all-PSCs.
基金supported by the National Natural Science Foundation of China(52172237,52072228)the Shaanxi International Cooperational Project(2020KWZ-018)+1 种基金the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(Grant No.2021-QZ-02)the Fundamental Research Funds for the Central Universities(3102019JC005)。
文摘All-inorganic CsPbI_(2)Br perovskite solar cells(PSCs)have received extensive research interests recently.Nevertheless,their low efficiency and poor long-term stability are still obstacles for further commercial application.Herein,we demonstrate that high efficiency and exceptional long-term stability are realized by incorporating gadolinium(III)chloride(GdCl_(3))into the CsPbI_(2)Br perovskite film.The incorporation of GdCl_(3) enhances the Goldschmidt tolerance factor of CsPbI_(2)Br perovskite,yielding a dense perovskite film with small grains,thus the a-phase CsPbI_(2)Br is remarkably stabilized.Additionally,it is found that the GdCl_(3)-incorporated perovskite film achieves suppressed charge recombination and appropriate energy level alignment compared with the pristine CsPbI_(2)Br film.The noticeable increment in efficiency from14.01%(control PSC)to 16.24%is achieved for GdCl_(3)-incorporated PSC.Moreover,the nonencapsulated GdCl_(3)-incorporated PSC exhibits excellent environmental and thermal stability,remaining over 91%or90%of the original efficiency after 1200 h aging at 40%relative humidity or 480 h heating at 85℃ in nitrogen glove box respectively.The encapsulated GdCl_(3)-incorporated PSC presents an improved operational stability with over 88%of initial efficiency under maximum power point(MPP)tracking at 45℃ for1000 h.This work presents an effective ion-incorporation approach for boosting efficiency and long-term stability of all-inorganic PSCs.
基金supported by the National Natural Science Foundation of China (21175043,91233102)the Fundamental Research Funds for the Central Universities for financial support
文摘CdSe quantum dot sensitized solar cells (QDSCs) modified with graphene quantum dots (GQDs) have been successfully achieved in this work for the first time. Satisfactorily, the optimized photovoltage (Voc) of the modified QDSCs was approximately 0.04 V higher than that of plain CdSe QDSCs, consequently improving the photovoltaic performance of the resulting QDSCs. Served as a novel coating on the CdSe QD sensitized photoanode, GQDs played a vital role in improving Voc due to the suppressed charge recombination which has been confirmed by electron impedance spectroscopy as well as transient photovoltage decay measure- ments. Moreover, different adsorption sequences, concentration and deposition time of GQDs have also been systematically investigated to boost the power conversion efficiency (PCE) of CdSe QDSCs. After the coating of CdSe with GQDs, the resulting champion CdSe QDSCs exhibited an improved PCE of 6.59% under AM 1.5G full one sun illumination.
基金the financial supports from the NSFC(51472274)the GDUPS(2016)+2 种基金the program of Guangzhou Science and Technology Project(201504010031)the NSF of Guangdong Province(S2013030013474)the Fundamental Research Funds for the Central Universities
文摘Nanostructured TiO2 with differentiate morphologies has attracted tremendous attention due to its wide band-gap nature as well as outstanding optical and electric properties for solar-driven light-toelectricity conversion application. Layered-stacking TiO2 film such as double-layer, tri-layer, quadrupleor quintuplicate-layer, is highly desirable to the design of high-performance semiconductor material photoanodes and the development of advanced photovoltaic devices. In this minireview, we will summarize the recent progress and achievements on proof-of-concept of layered-stacking TiO2 films(LTFs) for solar cells with emphasis on the tailored properties and synergistic functionalization of LTFs, such as optimized sensitizer adsorption, broadened light confinement as well as facilitated electron transport characteristics.Various demonstrations of LTFs photovoltaic systems provide lots of possibilities and flexibilities for more efficient solar energy utilization that a wide variety of TiO2 with distinguished morphologies can be integrated into differently structured photoanodes with synergistic and complementary advantages. This key structure engineering technology will also pave the way for the development of next generation state-ofthe-art electronics and optoelectronics. Finally, from our point of view, we conclude the future research interest and efforts for constructing more efficient LTFs as photoelectrode, which will be highly warranted to advance the solar energy conversion process.
文摘The efficiency of photovoltaic power generation is affected by the changeable weather conditions. This paper improves the efficiency of a standalone PV system over a wider range of operating conditions by employing novel switch adaptive control to an interleaved boost converter. With various loads, simulation and experimental results show that the interleaved boost converter with novel switch adaptive control offers better performance and higher conversion efficiency under changeable weather conditions.
基金financial support from the Development and Promotion of Science and Technology Talent Project(DPST) and Graduate School,Chiang Mai University
文摘Efficiency enhancement of Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) solar cell devices was performed by using iso-butyl ammonium iodide(IBA)passivated on Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3) films.The n-i-p structure of perovskite solar cell devices was fabricated with the structure of FTO/SnO_(2)/Cs_(0.1)(CH_(3)NH_(3))_(0.9)PbI_(3)(FTO,i.e.,fluorine doped tin oxide)and IBA/Spiro-OMeTAD/Ag.The effect of different weights of IBA passivated on Cs-doped perovskite solar cells(PSCs)was systematically investigated and compared with non-passivated devices.It was found that the 5-mg IBA-passivated devices exhibited a high power conversion efficiency(PCE)of 15.49%higher than 12.64%of non-IBA-passivated devices.The improvement of photovoltaic parameters of the 5-mg IBA-passivated device can be clearly observed compared to the Cs-doped device.The better performance of the IBA-passivated device can be confirmed by the reduction of PbI_(2) phase in the crystal structure,lower charge recombination rate,lower charge transfer resistance,and improved contact angle of perovskite films.Therefore,IBA passivation on Cs_(0.1)(CH_(3)NH)_(0.9)PbI_(3) is a promising technique to improve the efficiency of Cs-doped perovskite solar cells.
文摘Dye-sensitized solar cells (DSSCs) with ZnO spin-coated TiO2 photo-electrodes are compared to DSSC with a bare TiO2 photo-electrode. It is demonstrated that the deposited ZnO of controlled amount, by varying the precursor concentration in the coating sol, can indeed enhance the performance of the DSSC. The measured power conversion efficiency shows a maximum around the precursor concentration 0.1 M and falls down sharply to 0% beyond this point. The results are interpreted on the basis of two competing factors: At ZnO concentrations less than 0.1 M, the formation of an energy barrier increases the photocurrent by reducing the rate of interfacial back-recombination. At ZnO concentrations greater than 0.1 M, the screening of the TiO2 film by thicker ZnO layers decreases the photocurrent through the reduction of TiO2 dye-adsorption efficiency.
基金supported by the National Natural Science Foundation of China (U1401244, 21374025, 21372053, 21572041, and 51503050)the National Key Research and Development Program of China (2017YFA0206600)+1 种基金State Key Laboratory of Luminescent Materials and Devices (2016-skllmd-05)Youth Association for Promoting Innovation (CAS)
文摘Organic solar cells (OSCs) have advantages like light-weight, flexibility, colorfulness and solution processability [1 ]. The active layer of OSCs generally contains two organic semiconductors: an electron donor and an electron acceptor. The donor and acceptor make nanoscale phase separation to allow efficient exciton dissociation and also form a three-dimensional (3D) passage to rapidly transfer free charge carriers to respective electrodes.