Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors...Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.展开更多
This paper describes the implementation of a data logger for the real-time in-situ monitoring of hydrothermal systems. A compact mechanical structure ensures the security and reliability of data logger when used under...This paper describes the implementation of a data logger for the real-time in-situ monitoring of hydrothermal systems. A compact mechanical structure ensures the security and reliability of data logger when used under deep sea. The data logger is a battery powered instrument, which can connect chemical sensors (pH electrode, H2S electrode, H2 electrode) and temperature sensors. In order to achieve major energy savings, dynamic power management is implemented in hardware design and software design. The working current of the data logger in idle mode and active mode is 15 μA and 1.44 mA respectively, which greatly extends the working time of battery. The data logger has been successftdly tested in the first Sino-American Cooperative Deep Submergence Project from August 13 to September 3, 2005.展开更多
Gestational Diabetes Mellitus (GDM) is a significant health concern affecting pregnant women worldwide. It is characterized by elevated blood sugar levels during pregnancy and poses risks to both maternal and fetal he...Gestational Diabetes Mellitus (GDM) is a significant health concern affecting pregnant women worldwide. It is characterized by elevated blood sugar levels during pregnancy and poses risks to both maternal and fetal health. Maternal complications of GDM include an increased risk of developing type 2 diabetes later in life, as well as hypertension and preeclampsia during pregnancy. Fetal complications may include macrosomia (large birth weight), birth injuries, and an increased risk of developing metabolic disorders later in life. Understanding the demographics, risk factors, and biomarkers associated with GDM is crucial for effective management and prevention strategies. This research aims to address these aspects comprehensively through the analysis of a dataset comprising 600 pregnant women. By exploring the demographics of the dataset and employing data modeling techniques, the study seeks to identify key risk factors associated with GDM. Moreover, by analyzing various biomarkers, the research aims to gain insights into the physiological mechanisms underlying GDM and its implications for maternal and fetal health. The significance of this research lies in its potential to inform clinical practice and public health policies related to GDM. By identifying demographic patterns and risk factors, healthcare providers can better tailor screening and intervention strategies for pregnant women at risk of GDM. Additionally, insights into biomarkers associated with GDM may contribute to the development of novel diagnostic tools and therapeutic approaches. Ultimately, by enhancing our understanding of GDM, this research aims to improve maternal and fetal outcomes and reduce the burden of this condition on healthcare systems and society. However, it’s important to acknowledge the limitations of the dataset used in this study. Further research utilizing larger and more diverse datasets, perhaps employing advanced data analysis techniques such as Power BI, is warranted to corroborate and expand upon the findings of this research. This underscores the ongoing need for continued investigation into GDM to refine our understanding and improve clinical management strategies.展开更多
To protect the privacy of power data,we usually encrypt data before outsourcing it to the cloud servers.However,it is challenging to search over the encrypted data.In addition,we need to ensure that only authorized us...To protect the privacy of power data,we usually encrypt data before outsourcing it to the cloud servers.However,it is challenging to search over the encrypted data.In addition,we need to ensure that only authorized users can retrieve the power data.The attribute-based searchable encryption is an advanced technology to solve these problems.However,many existing schemes do not support large universe,expressive access policies,and hidden access policies.In this paper,we propose an attributebased keyword search encryption scheme for power data protection.Firstly,our proposed scheme can support encrypted data retrieval and achieve fine-grained access control.Only authorized users whose attributes satisfy the access policies can search and decrypt the encrypted data.Secondly,to satisfy the requirement in the power grid environment,the proposed scheme can support large attribute universe and hidden access policies.The access policy in this scheme does not leak private information about users.Thirdly,the security analysis and performance analysis indicate that our scheme is efficient and practical.Furthermore,the comparisons with other schemes demonstrate the advantages of our proposed scheme.展开更多
The study focuses on estimating the input power of a power plant from available data, using the theoretical inverter efficiency as the key parameter. The paper addresses the problem of missing data in power generation...The study focuses on estimating the input power of a power plant from available data, using the theoretical inverter efficiency as the key parameter. The paper addresses the problem of missing data in power generation systems and proposes an approach based on the efficiency formula widely documented in the literature. In the absence of input data, this method makes it possible to estimate the plant’s input power using data extracted from the site, in particular that provided by the Ministry of the Environment. The importance of this study lies in the need to accurately determine the input power in order to assess the overall performance of the energy system.展开更多
目的利用Power BI Desktop对医院DIP分组明细进行多维度对比分析及数据可视化,寻找医院DIP亏损原因。方法提取某三甲肿瘤专科医院2022年度部分出院结算DIP入组明细数据,通过数据导入、数据类型转换、建立数据关系、数据建模、数据可视...目的利用Power BI Desktop对医院DIP分组明细进行多维度对比分析及数据可视化,寻找医院DIP亏损原因。方法提取某三甲肿瘤专科医院2022年度部分出院结算DIP入组明细数据,通过数据导入、数据类型转换、建立数据关系、数据建模、数据可视化等方法,建立全院、科室、病种等多个维度的可视化动态分析报表。结果Power BI Desktop能有效提升DIP精细化管理水平,提升工作效率,精准分析亏损原因,指导科室进行改进,有效减少医院DIP医保资金亏损。结论Power BI Desktop具有成本低廉,定制化、可视化、自动化程度高,用户界面友好等特点,值得在各医院尤其是信息化程度低、专科运营人员不足、资金预算不足的医院DIP精细化管理中进行推广。展开更多
This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of co...This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of computer science in different fields of study. The technique used in this paper is handling the inadequate Information for citation;it removes the problem of cold start, which is encountered by very many other recommender systems. In this paper, abstracts, the titles, and the Microsoft academic graphs have been used in coming up with the recommendation list for every document, which is used to combine the content-based approaches and the co-citations. Prioritization and the blending of every technique have been allowed by the tuning system parameters, allowing for the authority in results of recommendation versus the paper novelty. In the end, we do observe that there is a direct correlation between the similarity rankings that have been produced by the system and the scores of the participant. The results coming from the associated scrips of analysis and the user survey have been made available through the recommendation system. Managers must gain the required expertise to fully utilize the benefits that come with business intelligence systems [1]. Data mining has become an important tool for managers that provides insights about their daily operations and leverage the information provided by decision support systems to improve customer relationships [2]. Additionally, managers require business intelligence systems that can rank the output in the order of priority. Ranking algorithm can replace the traditional data mining algorithms that will be discussed in-depth in the literature review [3].展开更多
Managing massive electric power data is a typical big data application because electric power systems generate millions or billions of status,debugging,and error records every single day.To guarantee the safety and su...Managing massive electric power data is a typical big data application because electric power systems generate millions or billions of status,debugging,and error records every single day.To guarantee the safety and sustainability of electric power systems,massive electric power data need to be processed and analyzed quickly to make real-time decisions.Traditional solutions typically use relational databases to manage electric power data.However,relational databases cannot efficiently process and analyze massive electric power data when the data size increases significantly.In this paper,we show how electric power data can be managed by using HBase,a distributed database maintained by Apache.Our system consists of clients,HBase database,status monitors,data migration modules,and data fragmentation modules.We evaluate the performance of our system through a series of experiments.We also show how HBase’s parameters can be tuned to improve the efficiency of our system.展开更多
This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an S...This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.展开更多
The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different W...The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different WSNs are adjacently deployed. Adopting multimode and spatial multiplexing network technology, the network is constructed into multi-mode-level to achieve different levels of data streaming. The network loads are shunted and the network resources are rationally utilized. Through the multi-sink nodes cooperation, the bottlenecks at the Sink node and its near several jump nodes are solved and process the competition of communication between nodes by channel adjustment. Finally, the paper analyzed the method and provided simulation experiment results. Simulation results show that the method can solve the funnel effect of the sink node, and get a good QoS.展开更多
This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communi...This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.展开更多
We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an ...We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method.展开更多
基金We gratefully acknowledge the support of National Natural Science Foundation of China(NSFC)(Grant No.51977133&Grant No.U2066209).
文摘Randomness and fluctuations in wind power output may cause changes in important parameters(e.g.,grid frequency and voltage),which in turn affect the stable operation of a power system.However,owing to external factors(such as weather),there are often various anomalies in wind power data,such as missing numerical values and unreasonable data.This significantly affects the accuracy of wind power generation predictions and operational decisions.Therefore,developing and applying reliable wind power interpolation methods is important for promoting the sustainable development of the wind power industry.In this study,the causes of abnormal data in wind power generation were first analyzed from a practical perspective.Second,an improved complete ensemble empirical mode decomposition with adaptive noise(ICEEMDAN)method with a generative adversarial interpolation network(GAIN)network was proposed to preprocess wind power generation and interpolate missing wind power generation sub-components.Finally,a complete wind power generation time series was reconstructed.Compared to traditional methods,the proposed ICEEMDAN-GAIN combination interpolation model has a higher interpolation accuracy and can effectively reduce the error impact caused by wind power generation sequence fluctuations.
基金supported by the International Cooperative Key Project(Grant No.2004DFA04900)Ministry of Sciences and Technology of PRC,and the National Natural Science Foundation of China (Grant Nos.40637037 and 50675198)
文摘This paper describes the implementation of a data logger for the real-time in-situ monitoring of hydrothermal systems. A compact mechanical structure ensures the security and reliability of data logger when used under deep sea. The data logger is a battery powered instrument, which can connect chemical sensors (pH electrode, H2S electrode, H2 electrode) and temperature sensors. In order to achieve major energy savings, dynamic power management is implemented in hardware design and software design. The working current of the data logger in idle mode and active mode is 15 μA and 1.44 mA respectively, which greatly extends the working time of battery. The data logger has been successftdly tested in the first Sino-American Cooperative Deep Submergence Project from August 13 to September 3, 2005.
文摘Gestational Diabetes Mellitus (GDM) is a significant health concern affecting pregnant women worldwide. It is characterized by elevated blood sugar levels during pregnancy and poses risks to both maternal and fetal health. Maternal complications of GDM include an increased risk of developing type 2 diabetes later in life, as well as hypertension and preeclampsia during pregnancy. Fetal complications may include macrosomia (large birth weight), birth injuries, and an increased risk of developing metabolic disorders later in life. Understanding the demographics, risk factors, and biomarkers associated with GDM is crucial for effective management and prevention strategies. This research aims to address these aspects comprehensively through the analysis of a dataset comprising 600 pregnant women. By exploring the demographics of the dataset and employing data modeling techniques, the study seeks to identify key risk factors associated with GDM. Moreover, by analyzing various biomarkers, the research aims to gain insights into the physiological mechanisms underlying GDM and its implications for maternal and fetal health. The significance of this research lies in its potential to inform clinical practice and public health policies related to GDM. By identifying demographic patterns and risk factors, healthcare providers can better tailor screening and intervention strategies for pregnant women at risk of GDM. Additionally, insights into biomarkers associated with GDM may contribute to the development of novel diagnostic tools and therapeutic approaches. Ultimately, by enhancing our understanding of GDM, this research aims to improve maternal and fetal outcomes and reduce the burden of this condition on healthcare systems and society. However, it’s important to acknowledge the limitations of the dataset used in this study. Further research utilizing larger and more diverse datasets, perhaps employing advanced data analysis techniques such as Power BI, is warranted to corroborate and expand upon the findings of this research. This underscores the ongoing need for continued investigation into GDM to refine our understanding and improve clinical management strategies.
基金supported in part by the National Science Foundation of China(62272389)the Shenzhen Fundamental Research Program(20210317191843003)+1 种基金Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2022065)Gansu Science and Technology Association Young Science and Technology Talents Lifting Project(GXH20220530-10).
文摘To protect the privacy of power data,we usually encrypt data before outsourcing it to the cloud servers.However,it is challenging to search over the encrypted data.In addition,we need to ensure that only authorized users can retrieve the power data.The attribute-based searchable encryption is an advanced technology to solve these problems.However,many existing schemes do not support large universe,expressive access policies,and hidden access policies.In this paper,we propose an attributebased keyword search encryption scheme for power data protection.Firstly,our proposed scheme can support encrypted data retrieval and achieve fine-grained access control.Only authorized users whose attributes satisfy the access policies can search and decrypt the encrypted data.Secondly,to satisfy the requirement in the power grid environment,the proposed scheme can support large attribute universe and hidden access policies.The access policy in this scheme does not leak private information about users.Thirdly,the security analysis and performance analysis indicate that our scheme is efficient and practical.Furthermore,the comparisons with other schemes demonstrate the advantages of our proposed scheme.
文摘The study focuses on estimating the input power of a power plant from available data, using the theoretical inverter efficiency as the key parameter. The paper addresses the problem of missing data in power generation systems and proposes an approach based on the efficiency formula widely documented in the literature. In the absence of input data, this method makes it possible to estimate the plant’s input power using data extracted from the site, in particular that provided by the Ministry of the Environment. The importance of this study lies in the need to accurately determine the input power in order to assess the overall performance of the energy system.
文摘目的利用Power BI Desktop对医院DIP分组明细进行多维度对比分析及数据可视化,寻找医院DIP亏损原因。方法提取某三甲肿瘤专科医院2022年度部分出院结算DIP入组明细数据,通过数据导入、数据类型转换、建立数据关系、数据建模、数据可视化等方法,建立全院、科室、病种等多个维度的可视化动态分析报表。结果Power BI Desktop能有效提升DIP精细化管理水平,提升工作效率,精准分析亏损原因,指导科室进行改进,有效减少医院DIP医保资金亏损。结论Power BI Desktop具有成本低廉,定制化、可视化、自动化程度高,用户界面友好等特点,值得在各医院尤其是信息化程度低、专科运营人员不足、资金预算不足的医院DIP精细化管理中进行推广。
文摘This research paper has provided the methodology and design for implementing the hybrid author recommender system using Azure Data Lake Analytics and Power BI. It offers a recommendation for the top 1000 Authors of computer science in different fields of study. The technique used in this paper is handling the inadequate Information for citation;it removes the problem of cold start, which is encountered by very many other recommender systems. In this paper, abstracts, the titles, and the Microsoft academic graphs have been used in coming up with the recommendation list for every document, which is used to combine the content-based approaches and the co-citations. Prioritization and the blending of every technique have been allowed by the tuning system parameters, allowing for the authority in results of recommendation versus the paper novelty. In the end, we do observe that there is a direct correlation between the similarity rankings that have been produced by the system and the scores of the participant. The results coming from the associated scrips of analysis and the user survey have been made available through the recommendation system. Managers must gain the required expertise to fully utilize the benefits that come with business intelligence systems [1]. Data mining has become an important tool for managers that provides insights about their daily operations and leverage the information provided by decision support systems to improve customer relationships [2]. Additionally, managers require business intelligence systems that can rank the output in the order of priority. Ranking algorithm can replace the traditional data mining algorithms that will be discussed in-depth in the literature review [3].
基金supported by the National Key R&D Program of China(No.2017YFB1003000)the National Natural Science Foundation of China(Nos.61702096,61572129,61602112,61502097,61320106007,61632008,and 61702097)+5 种基金the International S&T Cooperation Program of China(No.2015DFA10490)the Natural Science Foundation of Jiangsu Province(Nos.BK20170689 and BK20160695)the Jiangsu Provincial Key Laboratory of Network and Information Security(No.BM2003201)the Key Laboratory of Computer Network and Information Integration of Ministry of Education of China(No.93K-9)the SGCC Science and Technology Program“the Distributed Data Management of Physical Distribution and Logical Integration”partially supported by the Collaborative Innovation Center of Novel Software Technology and Industrialization and Collaborative Innovation Center of Wireless Communications Technology.
文摘Managing massive electric power data is a typical big data application because electric power systems generate millions or billions of status,debugging,and error records every single day.To guarantee the safety and sustainability of electric power systems,massive electric power data need to be processed and analyzed quickly to make real-time decisions.Traditional solutions typically use relational databases to manage electric power data.However,relational databases cannot efficiently process and analyze massive electric power data when the data size increases significantly.In this paper,we show how electric power data can be managed by using HBase,a distributed database maintained by Apache.Our system consists of clients,HBase database,status monitors,data migration modules,and data fragmentation modules.We evaluate the performance of our system through a series of experiments.We also show how HBase’s parameters can be tuned to improve the efficiency of our system.
基金supported by the National Natural Science Foundation of China ( No . 61602034 )the Beijing Natural Science Foundation (No. 4162049)+2 种基金the Open Research Fund of National Mobile Communications Research Laboratory,Southeast University (No. 2014D03)the Fundamental Research Funds for the Central Universities Beijing Jiaotong University (No. 2016JBM015)the NationalHigh Technology Research and Development Program of China (863 Program) (No. 2015AA015702)
文摘This paper investigates the simultaneous wireless information and powertransfer(SWIPT) for network-coded two-way relay network from an information-theoretic perspective, where two sources exchange information via an SWIPT-aware energy harvesting(EH) relay. We present a power splitting(PS)-based two-way relaying(PS-TWR) protocol by employing the PS receiver architecture. To explore the system sum rate limit with data rate fairness, an optimization problem under total power constraint is formulated. Then, some explicit solutions are derived for the problem. Numerical results show that due to the path loss effect on energy transfer, with the same total available power, PS-TWR losses some system performance compared with traditional non-EH two-way relaying, where at relatively low and relatively high signalto-noise ratio(SNR), the performance loss is relatively small. Another observation is that, in relatively high SNR regime, PS-TWR outperforms time switching-based two-way relaying(TS-TWR) while in relatively low SNR regime TS-TWR outperforms PS-TWR. It is also shown that with individual available power at the two sources, PS-TWR outperforms TS-TWR in both relatively low and high SNR regimes.
文摘The WSN used in power line monitoring is long chain structure, and the bottleneck near the Sink node is more obvious. In view of this, A Sink nodes’ cooperation mechanism is presented. The Sink nodes from different WSNs are adjacently deployed. Adopting multimode and spatial multiplexing network technology, the network is constructed into multi-mode-level to achieve different levels of data streaming. The network loads are shunted and the network resources are rationally utilized. Through the multi-sink nodes cooperation, the bottlenecks at the Sink node and its near several jump nodes are solved and process the competition of communication between nodes by channel adjustment. Finally, the paper analyzed the method and provided simulation experiment results. Simulation results show that the method can solve the funnel effect of the sink node, and get a good QoS.
基金supported by the State Grid Science and Technology Project (GEIRI-DL-71-17-002)
文摘This paper introduces the implementation and data analysis associated with a state-wide power quality monitoring and analysis system in China. Corporation specifications on power quality monitors as well as on communication protocols are formulated for data transmission. Big data platform and related technologies are utilized for data storage and computation. Compliance verification analysis and a power quality performance assessment are conducted, and a visualization tool for result presentation is finally presented.
文摘We present an electrical grid optimization method for economical benefit. After simplifying an IEEE feeder diagram, we build a compact smart grid system including a photovoltaic-inverter system, a shunt capacitor, an on-load tapchanger(OLTC) and transmission lines. The system power factor(PF) regulation and reactive power dispatching are indispensable to improve power quality. Our control method uses predictive weather and load data to decide engaging or tripping the shunt capacitor, or reactive power injection by the photovoltaic-inverter system, ultimately to keep the system PF in a good range. From the perspective of economics, the economical model is considered as a decision maker in our predictive data control method.Capacitor-only control strategy is a common photovoltaic(PV)regulation method, which is treated as a baseline case. Simulations with GridLAB-D on profiled loads and residential loads have been carried out. The comparison results with baseline control strategy and our predictive data control method show the appreciable economical benefit of our method.