Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,lead...Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy.展开更多
The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency an...The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.展开更多
The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/D...The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.展开更多
In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, ba...In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.展开更多
With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably...With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost.展开更多
The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleann...The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleanness value of distributed energy storage(DES)is proposed,and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness.Based on this,an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator.Then,an optimal low-carbon dispatching for a virtual power plant(VPP)with aggregated DES is constructed,where-in energy value and cleanness value are both considered.To achieve the goal,a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network(DN)and DES behavior,but as a cost,it brings multiple nonlinear relationships.Subsequently,a solution method based on the convex envelope(CE)linear re-construction method is proposed for the multivariate nonlinear programming problem,thereby improving solution efficiency and feasibility.Finally,the simulation verification based on the IEEE 33-bus DN is conducted.The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond.Meanwhile,resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value.展开更多
A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been...A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages;however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world.展开更多
This paper discusses the future power system consisting of distributed generations connected to local loads in the form of micro-grid systems.The benefits of having energy storage systems and the role of power electro...This paper discusses the future power system consisting of distributed generations connected to local loads in the form of micro-grid systems.The benefits of having energy storage systems and the role of power electronics in micro-grid systems are presented.This paper also examines how micro-grids have a key role to play in the development of the smart grid.展开更多
This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is...This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.展开更多
This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (...This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.展开更多
For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emis...For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%.展开更多
After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and de...After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.展开更多
The penetration of renewable energy sources(RESs)in the distribution system becomes a challenge for the reliable and safe operation of the existing power system.The sporadic characteristics of sustainable energy sourc...The penetration of renewable energy sources(RESs)in the distribution system becomes a challenge for the reliable and safe operation of the existing power system.The sporadic characteristics of sustainable energy sources along with the random load variations greatly affect the power quality and stability of the system.Hence,it requires storage systems with both high energy and high power handling capacity to coexist in microgrids.An efficient energy management structure is designed in this paper for a grid-connected PV system combined with hybrid storage of supercapacitor and battery.The combined supercapacitor and battery storage system grips the average and transient power changes,which provides a quick control for the DC-link voltage,i.e.,it stabilizes the system and helps achieve the PV power smoothing.The average power distribution between the power grid and battery is done by checking the state of charge(SOC)of a battery,and an effective and efficient energy management scheme is proposed.Additionally,the use of a supercapacitor lessens the current stress on the battery system during unexpected disparity in the generated power and load requirement.The performance and efficacy of the proposed energy management scheme are justified by simulation studies.展开更多
A wavelet-based power management system is proposed in this paper with a combination of the battery and ultracapacitor(UC)hybrid energy storage system(HESS).The wavelet filter serves as a frequency-based filter for di...A wavelet-based power management system is proposed in this paper with a combination of the battery and ultracapacitor(UC)hybrid energy storage system(HESS).The wavelet filter serves as a frequency-based filter for distributing the power between the battery and UC.In order to determine the optimal level of wavelet decomposition as well as the optimal activation power of the wavelet controller,an optimization procedure is established.The proposed frequency-based power management system moderates the usage of battery current,consequently improving its lifetime.Compared with the conventional threshold-based power management systems,the proposed system has the advantage of enhanced battery and UC power management.A LiFePO4 battery is considered and its life loss is modeled.As a case study,an electric motorcycle is evaluated in the federal test procedure(FTP)driving cycle.Compared with a conventional energy storage system(ESS)and a state of available power(SoP)management systems,the results show an improvement for the battery lifetime by 115%and 3%,respectively.The number of battery replacements is increased,and the energy recovery is improved.The 10-year overall costs of the proposed HESS strategy using wavelet are1500 dollars lower,compared with the ESS.展开更多
An economic and environmental evaluation of active distribution networks containing lithium ion batteries(Li-ion),sodium sulfur batteries(NaS)and vanadium redox flow batteries(VRB)was carried out using the EnergyPLAN ...An economic and environmental evaluation of active distribution networks containing lithium ion batteries(Li-ion),sodium sulfur batteries(NaS)and vanadium redox flow batteries(VRB)was carried out using the EnergyPLAN software.The prioritization schemes of the combination of energy storage systems and intermittent energy systems were studied technically and economically based on some specific situations of the grid integrated with wind power.The results suggest that the technical and economic optimal intermittent energy-storage capacity ratio was 2:1 in predetermined energy system scenarios.Liion batteries storage system performed the best in critical excess electricity production(CEEP)absorption,energy saving and emission reduction while NaS batteries storage system was the most competitive among the three due to its cheaper costs.展开更多
In the light of user-side energy power control requirements, a power control strategy for a household-level EPR based on HES droop control is proposed, focusing on the on-grid, off-grid and seamless switching process....In the light of user-side energy power control requirements, a power control strategy for a household-level EPR based on HES droop control is proposed, focusing on the on-grid, off-grid and seamless switching process. The system operating states are divided based on the DC bus voltage information with one converter used as a slack terminal to stabilize the DC bus voltage and the other converters as power terminals. In the on-grid mode, the GCC and the HES are used as the main control unit to achieve on-grid stable operation, whereas in the off-grid mode, the PV, HES and LC are used as the main control unit at different voltages to achieve stable operation of the island network. Finally, a DC MG system based on a household-level EPR is developed using the PSCAD / EMTDC simulation platform and the results show that the control strategy can effectively adjust the output of each subunit and maintain the stability of the DC bus voltage.展开更多
The upscaling requirements of energy transition highlight the urgent need for ramping up renewables and boosting system efficiencies.However,the stochastic nature of excessive renewable energy resources has challenged...The upscaling requirements of energy transition highlight the urgent need for ramping up renewables and boosting system efficiencies.However,the stochastic nature of excessive renewable energy resources has challenged stable and efficient operation of the power system.Battery energy storage systems(BESSs)have been identified as critical to mitigate random fluctuations,unnecessary green energy curtailment and load shedding with rapid response and flexible connection.On the other hand,an AC/DC hybrid distribution system can offer merged benefits in both AC and DC subsystems without additional losses during AC/DC power conversion.Therefore,configuring BESSs on an AC/DC distribution system is wellpositioned to meet challenges brought by carbon reductions in an efficient way.A bi-level optimization model of BESS capacity allocation for AC/DC hybrid distribution systems,considering the flexibility of voltage source converters(VSCs)and power conversion systems(PCSs),has been established in this paper to address the techno-economic issues that hindered wide implementation.The large-scale nonlinear programming problem has been solved utilizing a genetic algorithm combined with second-order cone programming.Rationality and effectiveness of the model have been verified by setting different scenarios through case studies.Simulation results have demonstrated the coordinated operation of BESS and AC/DC hybrid systems can effectively suppress voltage fluctuations and improve the cost-benefit of BESSs from a life cycle angle.展开更多
基金funded by the Natural Science Foundation of Shaanxi Province,Grant No.2021GY-135the Scientific Research Project of Yan’an University,Grant No.YDQ2018-07.
文摘Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy.
基金the Scientific and Technological Project of SGCC Headquarters entitled“Smart Distribution Network and Ubiquitous Power Internet of Things Integrated Development Collaborative Planning Technology Research”(5400-201956447A-0-0-00).
文摘The penetration rate of distributed generation is gradually increasing in the distribution system concerned.This is creating new problems and challenges in the planning and operation of the system.The intermittency and variability of power outputs from numerous distributed renewable generators could significantly jeopardize the secure operation of the distribution system.Therefore,it is necessary to assess the hosting capability for intermittent distributed generation by a distribution system considering operational constraints.This is the subject of this study.An assessment model considering the uncertainty of generation outputs from distributed generators is presented for this purpose.It involves different types of regulation or control functions using on-load tap-changers(OLTCs),reactive power compensation devices,energy storage systems,and the reactive power support of the distributed generators employed.A robust optimization model is then attained It is solved by Bertsimas robust counterpart through GUROBI solver.Finally,the feasibility and efficiency of the proposed method are demonstrated by a modified IEEE 33-bus distribution system.In addition,the effects of the aforementioned regulation or control functions on the enhancement of the hosting capability for intermittent distributed generation are examined.
基金supported by National Key Research and Development Program of China (2016YFB0900500,2017YFB0903100)the State Grid Science and Technology Project (SGRI-DL-F1-51-011)
文摘The AC/DC hybrid distribution network is one of the trends in distribution network development, which poses great challenges to the traditional distribution transformer. In this paper, a new topology suitable for AC/DC hybrid distribution network is put forward according to the demands of power grid, with advantages of accepting DG and DC loads, while clearing DC fault by blocking the clamping double sub-module(CDSM) of input stage. Then, this paper shows the typical structure of AC/DC distribution network that is hand in hand. Based on the new topology, this paper designs the control and modulation strategies of each stage, where the outer loop controller of input stage is emphasized for its twocontrol mode. At last, the rationality of new topology and the validity of control strategies are verified by the steady and dynamic state simulation. At the same time, the simulation results highlight the role of PET in energy regulation.
文摘In this paper, an extended analysis of the performance of different hybrid Rechargeable Energy Storage Systems (RESS) for use in Plug-in Hybrid Electric Vehicle (PHEV) with a series drivetrain topology is analyzed, based on simulations with three different driving cycles. The investigated hybrid energy storage topologies are an energy optimized lithium-ion battery (HE) in combination with an Electrical Double-Layer Capacitor (EDLC) system, in combination with a power optimized lithium-ion battery (HP) system or in combination with a Lithium-ion Capacitor (LiCap) system, that act as a Peak Power System. From the simulation results it was observed that hybridization of the HE lithium-ion based energy storage system resulted from the three topologies in an increased overall energy efficiency of the RESS, in an extended all electric range of the PHEV and in a reduced average current through the HE battery. The lowest consumption during the three driving cycles was obtained for the HE-LiCap topology, where fuel savings of respectively 6.0%, 10.3% and 6.8% compared with the battery stand-alone system were achieved. The largest extension of the range was achieved for the HE-HP configuration (17% based on FTP-75 driving cycle). HP batteries however have a large internal resistance in comparison to EDLC and LiCap systems, which resulted in a reduced overall energy efficiency of the hybrid RESS. Additionally, it was observed that the HP and LiCap systems both offer significant benefits for the integration of a peak power system in the drivetrain of a Plug-in Hybrid Electric Vehicle due to their low volume and weight in comparison to that of the EDLC system.
文摘With certain controllability of various distribution energy resources (DERs) such as battery energy storage system (BESS), demand response (DR) and distributed generations (DGs), virtual power plant (VPP) can suitably regulate the powers access to the distribution network. In this paper, an optimal VPP operating problem is used to optimize the charging/discharging schedule of each BESS and the DR scheme with the objective to maximize the benefit by regulating the supplied powers over daily 24 hours. The proposed solution method is composed of an iterative dynamic programming optimal BESS schedule approach and a particle swarm optimization based (PSO-based) DR scheme approach. The two approaches are executed alternatively until the minimum elec-tricity cost of the whole day is obtained. The validity of the proposed method was confirmed with the obviously decreased supplied powers in the peak-load hours and the largely reduced electricity cost.
基金supported by the National Key R&D Program of China(No.2021YFB2401200).
文摘The scale of distributed energy resources is increasing,but imperfect business models and value transmission mechanisms lead to low utilization ratio and poor responsiveness.To address this issue,the concept of cleanness value of distributed energy storage(DES)is proposed,and the spatiotemporal distribution mechanism is discussed from the perspectives of electrical energy and cleanness.Based on this,an evaluation system for the environmental benefits of DES is constructed to balance the interests between the aggregator and the power system operator.Then,an optimal low-carbon dispatching for a virtual power plant(VPP)with aggregated DES is constructed,where-in energy value and cleanness value are both considered.To achieve the goal,a green attribute labeling method is used to establish a correlation constraint between the nodal carbon potential of the distribution network(DN)and DES behavior,but as a cost,it brings multiple nonlinear relationships.Subsequently,a solution method based on the convex envelope(CE)linear re-construction method is proposed for the multivariate nonlinear programming problem,thereby improving solution efficiency and feasibility.Finally,the simulation verification based on the IEEE 33-bus DN is conducted.The simulation results show that the multidimensional value recognition of DES motivates the willingness of resource users to respond.Meanwhile,resolving the impact of DES on the nodal carbon potential can effectively alleviate overcompensation of the cleanness value.
文摘A smart grid will require, to greater or lesser degrees, advanced tools for planning and operation, broadly accepted communications platforms, smart sensors and controls, and real-time pricing. The smart grid has been described as something of an ecosystem with constantly communication, proactive, and virtually self-aware. The use of smart grid has a lot of economical and environmental advantages;however it has a downside of instability and unpredictability introduced by distributed generation (DG) from renewable energy into the public electric systems. Variable energies such as solar and wind power have a lack of stability and to avoid short-term fluctuations in power supplied to the grid, a local storage subsystem could be used to provide higher quality and stability in the fed energy. Energy storage systems (ESSs) would be a facilitator of smart grid deployment and a “small amount” of storage would have a “great impact” on the future power grid. The smart grid, with its various superior communications and control features, would make it possible to integrate the potential application of widely dispersed battery storage systems as well other ESSs. This work deals with a detailed updated review on available ESSs applications in future smart power grids. It also highlights latest projects carried out on different ESSs throughout all around the world.
基金funded by the ARC Linkage Grant LP100100618,Country Energy and the University of Wollongong
文摘This paper discusses the future power system consisting of distributed generations connected to local loads in the form of micro-grid systems.The benefits of having energy storage systems and the role of power electronics in micro-grid systems are presented.This paper also examines how micro-grids have a key role to play in the development of the smart grid.
文摘This paper presents a method for optimal sizing of a Micro grid connected to a hybrid source to ensure the continuity and quality of energy in a locality with a stochastically changing population. The hybrid system is composed of a solar photovoltaic system, a wind turbine, and an energy storage system. The reliability of the system is evaluated based on the voltage level regulation on IEEE 33-bus and IEEE 69-bus standards. Power factor correction is performed, despite some reliability and robustness constraints. This work focuses on energy management in a hybrid system considering climatic disturbances on the one hand, and on the other hand, this work evaluates the energy quality and the cost of energy. A combination of genetic algorithms of particle swarm optimization (CGAPSO) shows high convergence speed, which illustrates the robustness of the proposed system. The study of this system shows its feasibility and compliance with standards. The results obtained show a significant reduction in the total cost of production of this proposed system.
基金supported by the National Natural Science Foundation of China under Grant 61933014 and Grant 62173243.
文摘This paper presents a fully distributed state-of-charge balance control (DSBC) strategy for a distributed energy storage system (DESS). In this framework, each energy storage unit (ESU) processes the state-of-charge (SoC) information from its neighbors locally and adjusts the virtual impedance of the droop controller in real-time to change the current sharing. It is shown that the SoC balance of all ESUs can be achieved. Due to virtual impedance, voltage deviation of the bus occurs inevitably and increases with load power. Meanwhile, widespread of the constant power load (CPL) in the power system may cause instability. To ensure reliable operation of DESS under the proposed DSBC, the concept of the safe region is put forward. Within the safe region, DESS is stable and voltage deviation is acceptable. The boundary conditions of the safe region are derived from the equivalent model of DESS, in which stability is analyzed in terms of modified Brayton-Moser's criterion. Both simulations and hardware experiments verify the accuracy of the safe region and effectiveness of the proposed DSBC strategy.
文摘For domestic consumers in the rural areas of northern Kenya, as in other developing countries, the typical source of electrical supply is diesel generators. However, diesel generators are associated with both CO2 emissions, which adversely affect the environment and increase diesel fuel prices, which inflate the prices of consumer goods. The Kenya government has taken steps towards addressing this issue by proposing The Hybrid Mini-Grid Project, which involves the installation of 3 MW of wind and solar energy systems in facilities with existing diesel generators. However, this project has not yet been implemented. As a contribution to this effort, this study proposes, simulates and analyzes five different configurations of hybrid energy systems incorporating wind energy, solar energy and battery storage to replace the stand-alone diesel power systems servicing six remote villages in northern Kenya. If implemented, the systems proposed here would reduce Kenya’s dependency on diesel fuel, leading to reductions in its carbon footprint. This analysis confirms the feasibility of these hybrid systems with many configurations being profitable. A Multi-Attribute Trade-Off Analysis is employed to determine the best hybrid system configuration option that would reduce diesel fuel consumption and jointly minimize CO2 emissions and net present cost. This analysis determined that a wind-diesel-battery configuration consisting of two 500 kW turbines, 1200 kW diesel capacity and 95,040 Ah battery capacity is the best option to replace a 3200 kW stand-alone diesel system providing electricity to a village with a peak demand of 839 kW. It has the potential to reduce diesel fuel consumption and CO2 emissions by up to 98.8%.
基金supported by the State Grid Henan Economic Research Institute Science and Technology Project“Calculation and Demonstration of Distributed Photovoltaic Open Capacity Based on Multi-Source Heterogeneous Data”(5217L0230013).
文摘After the integration of large-scale DistributedGeneration(DG)into the distribution network,the randomness and volatility of its output result in a reduction of spatiotemporal alignment between power generation and demand in the distribution network,exacerbating the phenomenon of wind and solar power wastage.As a novel power system model,the fundamental concept of Regional Autonomous Power Grids(RAPGs)is to achieve localized management and energy autonomy,thereby facilitating the effective consumption of DGs.Therefore,this paper proposes a distributed resource planning strategy that enhances the autonomy capabilities of regional power grids by considering multiple evaluation indexes for autonomy.First,a regional Energy Storage(ES)configuration strategy is proposed.This strategy can select a suitable reference value for the upper limit of ES configuration based on the regional load andDGoutput to maximize the elimination of source load deviations in the region as the upper limit constraint of ES capacity.Then,a control strategy for regional ES is proposed,the charging and discharging reference line of ES is set,and multiple autonomy and economic indexes are used as objective functions to select different proportions of ES to control the distributed resources of the regional power grid and establish evaluation indexes of the internal regional generation and load power ratio,the proportion of power supply matching hours,new energy consumption rate and tie line power imbalance outside the region to evaluate changes in the regional autonomy capabilities.The final simulation results showthat in the real regional grid example,the planning method in the planning year in the region of the overall power supply matching hour ratio and new energy consumption rate increased by 3.9%and 4.8%on average,and the power imbalance of the tie line decreased by 7.8%on average.The proposed planning approach enables the maximization of regional autonomy while effectively smoothing the fluctuation of power exchange between the regional grid and the higher-level grid.This presents a rational and effective planning solution for the regional grid,facilitating the coordinated development between the region and the distribution network.
文摘The penetration of renewable energy sources(RESs)in the distribution system becomes a challenge for the reliable and safe operation of the existing power system.The sporadic characteristics of sustainable energy sources along with the random load variations greatly affect the power quality and stability of the system.Hence,it requires storage systems with both high energy and high power handling capacity to coexist in microgrids.An efficient energy management structure is designed in this paper for a grid-connected PV system combined with hybrid storage of supercapacitor and battery.The combined supercapacitor and battery storage system grips the average and transient power changes,which provides a quick control for the DC-link voltage,i.e.,it stabilizes the system and helps achieve the PV power smoothing.The average power distribution between the power grid and battery is done by checking the state of charge(SOC)of a battery,and an effective and efficient energy management scheme is proposed.Additionally,the use of a supercapacitor lessens the current stress on the battery system during unexpected disparity in the generated power and load requirement.The performance and efficacy of the proposed energy management scheme are justified by simulation studies.
基金supported by the Automotive Engineering Research Center(AERC)of Iran University of Science and Technology(IUST)the Vehicle,Fuel and Environment Research Institute(VFERI)of The University of Tehran.
文摘A wavelet-based power management system is proposed in this paper with a combination of the battery and ultracapacitor(UC)hybrid energy storage system(HESS).The wavelet filter serves as a frequency-based filter for distributing the power between the battery and UC.In order to determine the optimal level of wavelet decomposition as well as the optimal activation power of the wavelet controller,an optimization procedure is established.The proposed frequency-based power management system moderates the usage of battery current,consequently improving its lifetime.Compared with the conventional threshold-based power management systems,the proposed system has the advantage of enhanced battery and UC power management.A LiFePO4 battery is considered and its life loss is modeled.As a case study,an electric motorcycle is evaluated in the federal test procedure(FTP)driving cycle.Compared with a conventional energy storage system(ESS)and a state of available power(SoP)management systems,the results show an improvement for the battery lifetime by 115%and 3%,respectively.The number of battery replacements is increased,and the energy recovery is improved.The 10-year overall costs of the proposed HESS strategy using wavelet are1500 dollars lower,compared with the ESS.
基金This work was supported by the National High Technology Research and Development Program of China(863 Program)(No.2012AA050212).
文摘An economic and environmental evaluation of active distribution networks containing lithium ion batteries(Li-ion),sodium sulfur batteries(NaS)and vanadium redox flow batteries(VRB)was carried out using the EnergyPLAN software.The prioritization schemes of the combination of energy storage systems and intermittent energy systems were studied technically and economically based on some specific situations of the grid integrated with wind power.The results suggest that the technical and economic optimal intermittent energy-storage capacity ratio was 2:1 in predetermined energy system scenarios.Liion batteries storage system performed the best in critical excess electricity production(CEEP)absorption,energy saving and emission reduction while NaS batteries storage system was the most competitive among the three due to its cheaper costs.
基金National Key R&D Program of China(2018YFB0905000)Science and Technology Project of State Grid Corporation of China(SGTJDK00DWJS1800232).
文摘In the light of user-side energy power control requirements, a power control strategy for a household-level EPR based on HES droop control is proposed, focusing on the on-grid, off-grid and seamless switching process. The system operating states are divided based on the DC bus voltage information with one converter used as a slack terminal to stabilize the DC bus voltage and the other converters as power terminals. In the on-grid mode, the GCC and the HES are used as the main control unit to achieve on-grid stable operation, whereas in the off-grid mode, the PV, HES and LC are used as the main control unit at different voltages to achieve stable operation of the island network. Finally, a DC MG system based on a household-level EPR is developed using the PSCAD / EMTDC simulation platform and the results show that the control strategy can effectively adjust the output of each subunit and maintain the stability of the DC bus voltage.
基金supported in part by the National Natural Science Foundation of China(No.51777134)in part by a joint project of NSFC of China and EPSRC of UK(No.52061635103 and EP/T021969/1).
文摘The upscaling requirements of energy transition highlight the urgent need for ramping up renewables and boosting system efficiencies.However,the stochastic nature of excessive renewable energy resources has challenged stable and efficient operation of the power system.Battery energy storage systems(BESSs)have been identified as critical to mitigate random fluctuations,unnecessary green energy curtailment and load shedding with rapid response and flexible connection.On the other hand,an AC/DC hybrid distribution system can offer merged benefits in both AC and DC subsystems without additional losses during AC/DC power conversion.Therefore,configuring BESSs on an AC/DC distribution system is wellpositioned to meet challenges brought by carbon reductions in an efficient way.A bi-level optimization model of BESS capacity allocation for AC/DC hybrid distribution systems,considering the flexibility of voltage source converters(VSCs)and power conversion systems(PCSs),has been established in this paper to address the techno-economic issues that hindered wide implementation.The large-scale nonlinear programming problem has been solved utilizing a genetic algorithm combined with second-order cone programming.Rationality and effectiveness of the model have been verified by setting different scenarios through case studies.Simulation results have demonstrated the coordinated operation of BESS and AC/DC hybrid systems can effectively suppress voltage fluctuations and improve the cost-benefit of BESSs from a life cycle angle.