Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
A microgrid is defined as a local electric power distribution system with diverse DG (distributed generation) units, energy storage systems, and loads, which can operate as a part of the distribution system or when ...A microgrid is defined as a local electric power distribution system with diverse DG (distributed generation) units, energy storage systems, and loads, which can operate as a part of the distribution system or when needed can operate in an islanded mode. Energy storage systems play a key role in improving security, stability, and power quality of the microgrid. During grid-connected mode, these storage units are charged from various DG sources as well as the main grid. During islanded mode, DG sources along with the storage units need to supply the load. Power electronic interfaces between the microgrid buses and the storage units should be able to detect the mode of operation, allow seamless transition between the modes, and allow power flow in both directions, while maintaining stability and power quality. An overview of bidirectional converter topologies relevant to microgrid energy storage application and their control strategies will be presented in this paper.展开更多
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.
文摘A microgrid is defined as a local electric power distribution system with diverse DG (distributed generation) units, energy storage systems, and loads, which can operate as a part of the distribution system or when needed can operate in an islanded mode. Energy storage systems play a key role in improving security, stability, and power quality of the microgrid. During grid-connected mode, these storage units are charged from various DG sources as well as the main grid. During islanded mode, DG sources along with the storage units need to supply the load. Power electronic interfaces between the microgrid buses and the storage units should be able to detect the mode of operation, allow seamless transition between the modes, and allow power flow in both directions, while maintaining stability and power quality. An overview of bidirectional converter topologies relevant to microgrid energy storage application and their control strategies will be presented in this paper.