In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the ...In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.展开更多
基于电压控制方式(voltage-controlled method,VCM)的微电网接入配电线末端后,线路末端对谐波近似呈短路特性。由于功率因数校正电容与系统电感之间的谐振,背景谐波可能被严重放大,威胁系统设备安全。针对系统的背景谐波放大问题,提...基于电压控制方式(voltage-controlled method,VCM)的微电网接入配电线末端后,线路末端对谐波近似呈短路特性。由于功率因数校正电容与系统电感之间的谐振,背景谐波可能被严重放大,威胁系统设备安全。针对系统的背景谐波放大问题,提出一种分频阻性有源滤波器(discrete frequency resistive active power filter,DFRAPF)谐波抑制策略,即在距离配电线末端主要次谐波1/4波长的位置,针对相应次谐波安装与线路特征阻抗匹配的阻性有源滤波器(resistive active power filter,RAPF)。该策略可有效抑制基于末端微电网结构的配电网系统中的背景谐波放大现象,减小电压畸变。仿真与实验结果验证了该策略的有效性。展开更多
文摘In this research, the performance of the solar thermal powered systems (STPS) is analyzed with different models (without inserts, with inserts and with Nano fluids with different concentrations) and its impact on the Electric load in a residential/Institutional Electrical Distribution system. For this purpose, the electrical and solar thermal water heater is tested and validated. Solar thermal powered systems and its impact on the Institutional electrical distribution feeders are tested and compared with the energy efficiency (EE) and cost optimization. The goal of this paper is to analyze the impact of solar thermal energy on electrical energy consumption in the electrical distribution feeder level. The electrical system cost and energy consumptions are tabulated and observed that there is a considerable savings.
文摘基于电压控制方式(voltage-controlled method,VCM)的微电网接入配电线末端后,线路末端对谐波近似呈短路特性。由于功率因数校正电容与系统电感之间的谐振,背景谐波可能被严重放大,威胁系统设备安全。针对系统的背景谐波放大问题,提出一种分频阻性有源滤波器(discrete frequency resistive active power filter,DFRAPF)谐波抑制策略,即在距离配电线末端主要次谐波1/4波长的位置,针对相应次谐波安装与线路特征阻抗匹配的阻性有源滤波器(resistive active power filter,RAPF)。该策略可有效抑制基于末端微电网结构的配电网系统中的背景谐波放大现象,减小电压畸变。仿真与实验结果验证了该策略的有效性。