MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for th...MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources.Similarly,the employment of nonlinear loads will introduce harmonics into the system and,as a result,cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system.Thus,this research focuses on power quality enhancement in the MG using hybrid shunt filters.However,the performance of the filter mainly depends upon the design,and stability of the controller.The efficiency of the proposed filter is enhanced by incorporating an enhanced adaptive fuzzy neural network(AFNN)controller.The performance of the proposed topology is examined in a MATLAB/Simulink environment,and experimental findings are provided to validate the effectiveness of this approach.Further,the results of the proposed controller are compared with Adaptive Fuzzy Back-Stepping(AFBS)and Adaptive Fuzzy Sliding(AFS)to prove its superiority over power quality improvement in MG.From the analysis,it can be observed that the proposed system reduces the total harmonic distortion by about 1.8%,which is less than the acceptable limit standard.展开更多
With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD ...With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD effects on power grid equipment are destructive and hazardous,which causes irreversible damage to underlying electrical/electronic equipment of the concerned intelligent grids.In order to ensure safe and reliable equipment implementation,appropriate PQDdetection technologiesmust be adopted to avoid such adverse effects.This paper summarizes the newly proposed and traditional PQD detection techniques in order to give a quick start to new researchers in the related field,where specific scenarios and events for which each technique is applicable are also clearly presented.Finally,comments on the future evolution of PQD detection techniques are given.Unlike the published review articles,this paper focuses on the new techniques from the last five years while providing a brief recap on traditional PQD detection techniques so as to supply researchers with a systematic and state-of-the-art review for PQD detection.展开更多
With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,whic...With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.展开更多
This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system...This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system fault.The proposed hybrid multi-agent framework is a hybrid of both centralized and decentralized scheme to allow distributed intelligent agent in the smart grid system to make fast local decision while allowing the slower central controller to judge the effectiveness of the decision made by the local agents and to suggest more optimal solutions.展开更多
The integration of electricity technology and information technology,such as the Internet of Things(IoT),enables the construction of new power systems,along with the inno-vation of application scenarios and business s...The integration of electricity technology and information technology,such as the Internet of Things(IoT),enables the construction of new power systems,along with the inno-vation of application scenarios and business scope.The key technologies of power IoT and the data flow process are summarised first.The IoT technology and application scenario requirements of power generation,transmission,loading,and storage of new power systems are studied.Thus,the nature of the collaborative development of the digital power grid and the IoT is demonstrated from the perspective of data processing in power IoT and application requirements in power systems.The key problems and so-lutions faced by the power IoT under the digital transformation are described,and the cross-integration of key technologies and promotion of application scenario innovation are prospected.Finally,the key issues of future technological development were dis-cussed,providing reference ideas for fully leveraging the value of energy and electricity data production factors and promoting the construction of a digital electricity ecosystem.展开更多
The identification of important nodes in a power grid has considerable benefits for safety. Power networks vary in many aspects, such as scale and structure. An index system can hardly cover all the information in var...The identification of important nodes in a power grid has considerable benefits for safety. Power networks vary in many aspects, such as scale and structure. An index system can hardly cover all the information in various situations. Therefore, the efficiency of traditional methods using an index system is case-dependent and not universal. To solve this problem, an artificial intelligence based method is proposed for evaluating power grid node importance. First, using a network embedding approach, a feature extraction method is designed for power grid nodes, considering their structural and electrical information. Then, for a specific power network, steady-state and node fault transient simulations under various operation modes are performed to establish the sample set. The sample set can reflect the relationship between the node features and the corresponding importance. Finally, a support vector regression model is trained based on the optimized sample set for the later online use of importance evaluation. A case study demonstrates that the proposed method can effectively evaluate node importance for a power grid based on the information learned from the samples. Compared with traditional methods using an index system, the proposed method can avoid some possible bias. In addition, a particular sample set for each specific power network can be established under this artificial intelligence based framework, meeting the demand of universality.展开更多
针对传统的手打拟票、手工记录以及电话下令的业务开展方式已成为操作效率提升的瓶颈,提出在调度指挥控制系统(dispatch command control system,DCCS)上设计调度操作指挥模块。将电话下令转变为网络交互;构建多种基于智能规则的自动成...针对传统的手打拟票、手工记录以及电话下令的业务开展方式已成为操作效率提升的瓶颈,提出在调度指挥控制系统(dispatch command control system,DCCS)上设计调度操作指挥模块。将电话下令转变为网络交互;构建多种基于智能规则的自动成票手段,取代传统的手打出票方式;操作完成后系统可自动记录设备状态信息并通知相关单位,实现调度操作全流程的网络化、信息化与智能化。模块上线运行结果表明,数据显示对调度操作效率的提升作用显著。展开更多
文摘MigroGrid(MG)has emerged to resolve the growing demand for energy.But because of its inconsistent output,it can result in various power quality(PQ)issues.PQ is a problem that is becoming more and more important for the reliability of power systems that use renewable energy sources.Similarly,the employment of nonlinear loads will introduce harmonics into the system and,as a result,cause distortions in the current and voltage waveforms as well as low power quality issues in the supply system.Thus,this research focuses on power quality enhancement in the MG using hybrid shunt filters.However,the performance of the filter mainly depends upon the design,and stability of the controller.The efficiency of the proposed filter is enhanced by incorporating an enhanced adaptive fuzzy neural network(AFNN)controller.The performance of the proposed topology is examined in a MATLAB/Simulink environment,and experimental findings are provided to validate the effectiveness of this approach.Further,the results of the proposed controller are compared with Adaptive Fuzzy Back-Stepping(AFBS)and Adaptive Fuzzy Sliding(AFS)to prove its superiority over power quality improvement in MG.From the analysis,it can be observed that the proposed system reduces the total harmonic distortion by about 1.8%,which is less than the acceptable limit standard.
文摘With increasing global concerns about clean energy in smart grids,the detection of power quality disturbances(PQDs)caused by energy instability is becoming more and more prominent.It is well acknowledged that the PQD effects on power grid equipment are destructive and hazardous,which causes irreversible damage to underlying electrical/electronic equipment of the concerned intelligent grids.In order to ensure safe and reliable equipment implementation,appropriate PQDdetection technologiesmust be adopted to avoid such adverse effects.This paper summarizes the newly proposed and traditional PQD detection techniques in order to give a quick start to new researchers in the related field,where specific scenarios and events for which each technique is applicable are also clearly presented.Finally,comments on the future evolution of PQD detection techniques are given.Unlike the published review articles,this paper focuses on the new techniques from the last five years while providing a brief recap on traditional PQD detection techniques so as to supply researchers with a systematic and state-of-the-art review for PQD detection.
基金supported by the National Key R&D Program of China(2018AAA0101500).
文摘With integration of large-scale renewable energy,new controllable devices,and required reinforcement of power grids,modern power systems have typical characteristics such as uncertainty,vulnerability and openness,which makes operation and control of power grids face severe security challenges.Application of artificial intelligence(AI)technologies represented by machine learning in power grid regulation is limited by reliability,interpretability and generalization ability of complex modeling.Mode of hybrid-augmented intelligence(HAI)based on human-machine collaboration(HMC)is a pivotal direction for future development of AI technology in this field.Based on characteristics of applications in power grid regulation,this paper discusses system architecture and key technologies of human-machine hybrid-augmented intelligence(HHI)system for large-scale power grid dispatching and control(PGDC).First,theory and application scenarios of HHI are introduced and analyzed;then physical and functional architectures of HHI system and human-machine collaborative regulation process are proposed.Key technologies are discussed to achieve a thorough integration of human/machine intelligence.Finally,state-of-theart and future development of HHI in power grid regulation are summarized,aiming to efficiently improve the intelligent level of power grid regulation in a human-machine interactive and collaborative way.
基金funded by the ARC Linkage Grant LP LP0991428a URC Research Partnerships Grants Scheme, from the University of Wollongong
文摘This paper discusses the applications of a hybrid multi-agent framework for self-healing applications in an intelligent smart grid system following catastrophic disturbances such as loss of generators or during system fault.The proposed hybrid multi-agent framework is a hybrid of both centralized and decentralized scheme to allow distributed intelligent agent in the smart grid system to make fast local decision while allowing the slower central controller to judge the effectiveness of the decision made by the local agents and to suggest more optimal solutions.
基金National Natural Science Foundation of China,Grant/Award Number:52177085DGRI‐CSG Innovative Project,Grant/Award Number:210000KK52220036。
文摘The integration of electricity technology and information technology,such as the Internet of Things(IoT),enables the construction of new power systems,along with the inno-vation of application scenarios and business scope.The key technologies of power IoT and the data flow process are summarised first.The IoT technology and application scenario requirements of power generation,transmission,loading,and storage of new power systems are studied.Thus,the nature of the collaborative development of the digital power grid and the IoT is demonstrated from the perspective of data processing in power IoT and application requirements in power systems.The key problems and so-lutions faced by the power IoT under the digital transformation are described,and the cross-integration of key technologies and promotion of application scenario innovation are prospected.Finally,the key issues of future technological development were dis-cussed,providing reference ideas for fully leveraging the value of energy and electricity data production factors and promoting the construction of a digital electricity ecosystem.
文摘The identification of important nodes in a power grid has considerable benefits for safety. Power networks vary in many aspects, such as scale and structure. An index system can hardly cover all the information in various situations. Therefore, the efficiency of traditional methods using an index system is case-dependent and not universal. To solve this problem, an artificial intelligence based method is proposed for evaluating power grid node importance. First, using a network embedding approach, a feature extraction method is designed for power grid nodes, considering their structural and electrical information. Then, for a specific power network, steady-state and node fault transient simulations under various operation modes are performed to establish the sample set. The sample set can reflect the relationship between the node features and the corresponding importance. Finally, a support vector regression model is trained based on the optimized sample set for the later online use of importance evaluation. A case study demonstrates that the proposed method can effectively evaluate node importance for a power grid based on the information learned from the samples. Compared with traditional methods using an index system, the proposed method can avoid some possible bias. In addition, a particular sample set for each specific power network can be established under this artificial intelligence based framework, meeting the demand of universality.
文摘针对传统的手打拟票、手工记录以及电话下令的业务开展方式已成为操作效率提升的瓶颈,提出在调度指挥控制系统(dispatch command control system,DCCS)上设计调度操作指挥模块。将电话下令转变为网络交互;构建多种基于智能规则的自动成票手段,取代传统的手打出票方式;操作完成后系统可自动记录设备状态信息并通知相关单位,实现调度操作全流程的网络化、信息化与智能化。模块上线运行结果表明,数据显示对调度操作效率的提升作用显著。