The conservation laws for the (1+2)-dimensional Zakharov-Kuznetsov modified equal width (ZK-MEW) equation with power law nonlinearity are constructed by using Noether's approach through an interesting method of ...The conservation laws for the (1+2)-dimensional Zakharov-Kuznetsov modified equal width (ZK-MEW) equation with power law nonlinearity are constructed by using Noether's approach through an interesting method of increasing the order of this equation. With the aid of an obtained conservation law, the generalized double reduction theorem is applied to this equation. It can be shown that the reduced equation is a second order nonlinear ODE. FinaJ1y, some exact solutions for a particular case of this equation are obtained after solving the reduced equation.展开更多
基金Supported by the Fundamental Research Funds for the Central Universities under Grant No.2013XK03the National Natural Science Foundation of China under Grant No.11371361
文摘The conservation laws for the (1+2)-dimensional Zakharov-Kuznetsov modified equal width (ZK-MEW) equation with power law nonlinearity are constructed by using Noether's approach through an interesting method of increasing the order of this equation. With the aid of an obtained conservation law, the generalized double reduction theorem is applied to this equation. It can be shown that the reduced equation is a second order nonlinear ODE. FinaJ1y, some exact solutions for a particular case of this equation are obtained after solving the reduced equation.