The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the...The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the unbalance occurs,the safe operation of the electrical equipment will be seriously jeopardized.This paper proposes a Hierarchical Temporal Memory(HTM)-based three-phase unbalance prediction model consisted by the encoder for binary coding,the spatial pooler for frequency pattern learning,the temporal pooler for pattern sequence learning,and the sparse distributed representations classifier for unbalance prediction.Following the feasibility of spatial-temporal streaming data analysis,we adopted this brain-liked neural network to a real-time prediction for power load.We applied the model in five cities(Tangshan,Langfang,Qinhuangdao,Chengde,Zhangjiakou)of north China.We experimented with the proposed model and Long Short-term Memory(LSTM)model and analyzed the predict results and real currents.The results show that the predictions conform to the reality;compared to LSTM,the HTM-based prediction model shows enhanced accuracy and stability.The prediction model could serve for the overload warning and the load planning to provide high-quality power grid operation.展开更多
The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV volta...The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.展开更多
The single-phase traction load has essentially an unbalance characteristic at the Point of Common Coupling (PCC), which injects harmonic into the utility grid. In this paper, the effect of harmonic distortion and unba...The single-phase traction load has essentially an unbalance characteristic at the Point of Common Coupling (PCC), which injects harmonic into the utility grid. In this paper, the effect of harmonic distortion and unbalance loading are investigated simultaneously for electrical railway systems. Special traction transformers (i.e. single-phase, V/V, Wye-Delta, Scott, and Le Blanc) are used between the utility grid and the traction load. For analysis, different defini-tions of power factors are considered, which are presented by IEEE Std.1459. The detailed simulation study is made with MATLAB/SIMULINK program to represent the impacts of harmonic components and unbalance loading on the power factor behavior in the Electrical Railway systems.展开更多
基金This study is supported by the National Natural Science Foundation of China(No.61801019).
文摘The difference in electricity and power usage time leads to an unbalanced current among the three phases in the power grid.The three-phase unbalanced is closely related to power planning and load distribution.When the unbalance occurs,the safe operation of the electrical equipment will be seriously jeopardized.This paper proposes a Hierarchical Temporal Memory(HTM)-based three-phase unbalance prediction model consisted by the encoder for binary coding,the spatial pooler for frequency pattern learning,the temporal pooler for pattern sequence learning,and the sparse distributed representations classifier for unbalance prediction.Following the feasibility of spatial-temporal streaming data analysis,we adopted this brain-liked neural network to a real-time prediction for power load.We applied the model in five cities(Tangshan,Langfang,Qinhuangdao,Chengde,Zhangjiakou)of north China.We experimented with the proposed model and Long Short-term Memory(LSTM)model and analyzed the predict results and real currents.The results show that the predictions conform to the reality;compared to LSTM,the HTM-based prediction model shows enhanced accuracy and stability.The prediction model could serve for the overload warning and the load planning to provide high-quality power grid operation.
文摘The paper dwells on the unified power quality indexes characterizing the phenomenon of voltage unbalance in three-phase systems. Voltage unbalance is one of the commonest occurrences in the town mains of 0.38 kV voltage. The phenomenon describes as inequality of vector magnitude of phase voltage and shearing angle between them. Causes and consequences of the voltage unbalance in distribution networks have been considered. The algorithm, which allows switching one-phase load, has been developed as one of the methods of reducing the unbalance level. The algorithm is written in the function block diagram programming language. For determining the duration and magnitude of the unbalance level it is proposed to introduce the forecasting algorithm. The necessary data for forecasting are accumulated in the course of the algorithm based on the Function Block Diagram. The algorithm example is given for transforming substation of the urban electrical power supply system. The results of the economic efficiency assessment of the algorithm implementation are shown in conclusion. The use of automatic switching of the one-phase load for explored substation allows reducing energy losses (active electric energy by 7.63%;reactive energy by 8.37%). It also allows improving supply quality to a consumer. For explored substation the average zero-sequence unbalance factor has dropped from 3.59% to 2.13%, and the negative-sequence unbalance factor has dropped from 0.61% to 0.36%.
文摘The single-phase traction load has essentially an unbalance characteristic at the Point of Common Coupling (PCC), which injects harmonic into the utility grid. In this paper, the effect of harmonic distortion and unbalance loading are investigated simultaneously for electrical railway systems. Special traction transformers (i.e. single-phase, V/V, Wye-Delta, Scott, and Le Blanc) are used between the utility grid and the traction load. For analysis, different defini-tions of power factors are considered, which are presented by IEEE Std.1459. The detailed simulation study is made with MATLAB/SIMULINK program to represent the impacts of harmonic components and unbalance loading on the power factor behavior in the Electrical Railway systems.