Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ...Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.展开更多
A backbone enterprise under the ChinaAviation Industry Corporation,theSouth Aeronautic Power MachineryCompany is well known for its South brandmotorcycles.The SAPMC is the coreenterprise of the China South Aviation Po...A backbone enterprise under the ChinaAviation Industry Corporation,theSouth Aeronautic Power MachineryCompany is well known for its South brandmotorcycles.The SAPMC is the coreenterprise of the China South Aviation PowerMachinery Group,which is among China’sfirst 56 large-scale enterprise groups approvedby the State Council.In 1994,the展开更多
A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater temperature response in different operating conditions is simulated numerically. The effects of single or multipl...A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater temperature response in different operating conditions is simulated numerically. The effects of single or multiple system parameters on the water temperature are analyzed. The results show that, changing different single parameters, the time taken for the steady backwater temperature is different, but relatively short;and if multiple parameters are changed, the time will be longer. Referred to the thermal balance test, the simulation results are validated and provide a basis for the intelligent control of the cooling system.展开更多
Based on the analysis of the high temperature decomposition of oxydal(H2O2)and the combustion of diesel engine,the effects of H2O2 on the improvement of diesel combustion were studied.An oxydal spray system was design...Based on the analysis of the high temperature decomposition of oxydal(H2O2)and the combustion of diesel engine,the effects of H2O2 on the improvement of diesel combustion were studied.An oxydal spray system was designed to inject H2O2/water mixture into the manifold.The experiment was carried out on a 1135 diesel engine bench.The results show that H2O2 injection can make the curve of heat release rate move forward and decrease its peak value.The specific fuel consumption is decreased a little,while both NOx and PM emission are obviously reduced.展开更多
A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine's combustion chamber when the combustion temperature decreases to 1573-1073K, NOx generated could be reduced to 1.11g/(kW&...A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine's combustion chamber when the combustion temperature decreases to 1573-1073K, NOx generated could be reduced to 1.11g/(kW·h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions[1], the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases.展开更多
The control parameters of electronic governor that influence the transient characteristics of the engine are analyzed.An electric control unit was developed and the control parameters were calibrated on the test bench...The control parameters of electronic governor that influence the transient characteristics of the engine are analyzed.An electric control unit was developed and the control parameters were calibrated on the test bench.The initial value of integral term and the maximum output of rack position proportion,integration and derivation(PID)controller affect the step and triangle response drastically.Through correcting the proportional term and integral term of speed PID controller,the dynamic speed drop and speed overshoot are improved.A property control strategy for cold starting an engine is set,and the calibration process indicates that the fuel injected into the cylinder per cycle and the desired speed ascend rate drastically affect the start transient process.展开更多
A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of ...A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of the diesel-engine combustion system,including chamber structure,swirl ratio of cylinder head,included angle of jet orifice,number and diameter of jet orifice,fuel injection pressure and timing.The effect of double-wall jet combustion system on combustion and engine performance was tested to obtain the best performance indexes,and the double-wall jet combustion system was compared to the prototype.The results show that NOx is reduced from 712 PPm to 487 PPm at 2 100 r/min,and from 593 PPm to 369 PPm at 3 000 r/min,which are reduced by 31.6% and 37.7%,respectively.The smoke intensity was reduced form 3.67 BSU to 2.1 BSU,and the oil consumption was reduced from 240.5 g/(kW·h) to 225.4 g/(kW·h),which was decreased by 6.3% at low speed.The pressure in the cylinder was obviously reduced from 115 bar to 108 bar,which was reduced by 6%.展开更多
In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral struct...In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral structure for a newtype of opposed-piston hydraulic-output( OPHO) engine has been designed,an operating principle has been introduced,the composition of its synchronous drive mechanism has been carefully analyzed,and a mathematical model has been built. In addition,the kinematics models of both the mechanism and the conventional crank-link mechanism have been established by utilizing MATLAB,and the movement rules of the pivotal moving components have been obtained. According to the simulation results,the piston movement of this newtype of opposed-piston hydraulic-output engine reveals a prominent asymmetry compared to the conventional crank-link engine. Under a fixed engine revolving speed,the compression time of the opposedpiston hydraulic-output engine is shortened while the expanding time is lengthened,thus the gas turbulence intensity is strengthened around the top dead center( TDC) position. Meanwhile,the piston obtains a longer isometric process compared to conventional engines,which could be benefitial to enhance the combustion efficiency.展开更多
High speed centrifugalcompressors are widely usedinindustry.Itisimportantto understanditsinternal flow fieldin orderto design higher efficiency and pressure ratio impellers.In this paper,a 3 Dviscous code to solve ...High speed centrifugalcompressors are widely usedinindustry.Itisimportantto understanditsinternal flow fieldin orderto design higher efficiency and pressure ratio impellers.In this paper,a 3 Dviscous code to solve the simplified Reynolds averaged Navier Stokes equations has been developed. The viscous effect is simulated by viscous bodyforce method.The governing equations are spatially discretizedinthe cell vortex finite volume scheme on a simple Hmesh.Theturbulence closureis made usingthe Baldwin Lomax model.This codeis demonstratedfor predictingtheinternalflow field of a high speed impeller.Some laser measured results are also illustratedfor comparing with calculated data.展开更多
基金the National Natural Science Foundation of China(No.51875209)the Guangdong Basic and Applied Basic Research Foundation(No.2019B1515120060)the Open Funds of State Key Laboratory of Nuclear Power Safety Monitoring Technology and Equipment。
文摘Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified.
文摘A backbone enterprise under the ChinaAviation Industry Corporation,theSouth Aeronautic Power MachineryCompany is well known for its South brandmotorcycles.The SAPMC is the coreenterprise of the China South Aviation PowerMachinery Group,which is among China’sfirst 56 large-scale enterprise groups approvedby the State Council.In 1994,the
文摘A simulation model for a certain diesel engine cooling system is set up by using GT-COOL. The backwater temperature response in different operating conditions is simulated numerically. The effects of single or multiple system parameters on the water temperature are analyzed. The results show that, changing different single parameters, the time taken for the steady backwater temperature is different, but relatively short;and if multiple parameters are changed, the time will be longer. Referred to the thermal balance test, the simulation results are validated and provide a basis for the intelligent control of the cooling system.
文摘Based on the analysis of the high temperature decomposition of oxydal(H2O2)and the combustion of diesel engine,the effects of H2O2 on the improvement of diesel combustion were studied.An oxydal spray system was designed to inject H2O2/water mixture into the manifold.The experiment was carried out on a 1135 diesel engine bench.The results show that H2O2 injection can make the curve of heat release rate move forward and decrease its peak value.The specific fuel consumption is decreased a little,while both NOx and PM emission are obviously reduced.
基金Sponsored by the Hunan Science and Technology Agency Science Research Program 09(2009GK3091)the Hunan Provincial Education Department Science Research Program 09(09C1138)
文摘A certain amount of ammonia reducer were directly injected into the 4102BZLQ Diesel engine's combustion chamber when the combustion temperature decreases to 1573-1073K, NOx generated could be reduced to 1.11g/(kW·h). Based on PRF combustion mechanism, NO was tested by using the heavy-duty diesel engine test cycle of ESC thirteen conditions[1], the ammonia spray angle and amount were tested and optimized in different conditions. The test results show that the thermal efficiency of Diesel engine does not decrease while NO exhaust decreases.
文摘The control parameters of electronic governor that influence the transient characteristics of the engine are analyzed.An electric control unit was developed and the control parameters were calibrated on the test bench.The initial value of integral term and the maximum output of rack position proportion,integration and derivation(PID)controller affect the step and triangle response drastically.Through correcting the proportional term and integral term of speed PID controller,the dynamic speed drop and speed overshoot are improved.A property control strategy for cold starting an engine is set,and the calibration process indicates that the fuel injected into the cylinder per cycle and the desired speed ascend rate drastically affect the start transient process.
文摘A space-dispersed double-wall jet combustion system was developed by adopting the wall-guiding spray method and the stratification theory.The experimental test was carried out to optimize the structural parameters of the diesel-engine combustion system,including chamber structure,swirl ratio of cylinder head,included angle of jet orifice,number and diameter of jet orifice,fuel injection pressure and timing.The effect of double-wall jet combustion system on combustion and engine performance was tested to obtain the best performance indexes,and the double-wall jet combustion system was compared to the prototype.The results show that NOx is reduced from 712 PPm to 487 PPm at 2 100 r/min,and from 593 PPm to 369 PPm at 3 000 r/min,which are reduced by 31.6% and 37.7%,respectively.The smoke intensity was reduced form 3.67 BSU to 2.1 BSU,and the oil consumption was reduced from 240.5 g/(kW·h) to 225.4 g/(kW·h),which was decreased by 6.3% at low speed.The pressure in the cylinder was obviously reduced from 115 bar to 108 bar,which was reduced by 6%.
基金Supported by the Basic Research Projects of National Ministries and Commissions(62201070215)
文摘In order to improve the thermal power conversion capacity of the internal combustion engine,combined with existing opposed-piston two-stroke engine( OP2S) and hydraulic free piston engine(HFPE),the integral structure for a newtype of opposed-piston hydraulic-output( OPHO) engine has been designed,an operating principle has been introduced,the composition of its synchronous drive mechanism has been carefully analyzed,and a mathematical model has been built. In addition,the kinematics models of both the mechanism and the conventional crank-link mechanism have been established by utilizing MATLAB,and the movement rules of the pivotal moving components have been obtained. According to the simulation results,the piston movement of this newtype of opposed-piston hydraulic-output engine reveals a prominent asymmetry compared to the conventional crank-link engine. Under a fixed engine revolving speed,the compression time of the opposedpiston hydraulic-output engine is shortened while the expanding time is lengthened,thus the gas turbulence intensity is strengthened around the top dead center( TDC) position. Meanwhile,the piston obtains a longer isometric process compared to conventional engines,which could be benefitial to enhance the combustion efficiency.
文摘High speed centrifugalcompressors are widely usedinindustry.Itisimportantto understanditsinternal flow fieldin orderto design higher efficiency and pressure ratio impellers.In this paper,a 3 Dviscous code to solve the simplified Reynolds averaged Navier Stokes equations has been developed. The viscous effect is simulated by viscous bodyforce method.The governing equations are spatially discretizedinthe cell vortex finite volume scheme on a simple Hmesh.Theturbulence closureis made usingthe Baldwin Lomax model.This codeis demonstratedfor predictingtheinternalflow field of a high speed impeller.Some laser measured results are also illustratedfor comparing with calculated data.