Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified ...Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.展开更多
A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defoss...A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defossilisation.The remaining energy sources or forms are renewable electric energy,green hydrogen and renewable fuels.A holistic view of the CO_(2) emissions of these energy sources and forms and the resulting powertrain technologies must take into account all cradle-to-grave emissions for both the vehicle and the energy supply.In order to compare the different forms of energy,the three most relevant forms of powertrain technology are considered and a configuration is chosen that allows for an appropriate comparison.For this purpose,data from the FVV project“Powertrain 2040”are used[1]and combined with research data on the energy supply chain for passenger cars.The three comparable powertrain configurations are a battery electric vehicle,a fuel cell electric vehicle and an internal combustion engine hybrid vehicle fueled with electric fuel.First,the three selected powertrain configurations are presented in terms of their performance,weight,technology and other characteristics.A comparative analysis is carried out for different CO_(2) emissions of the electricity mix.The electricity mix is used for both the production of the vehicle and the energy.The results are presented in the form of cradle-to-wheel emissions,which consider the total CO_(2) emissions of the vehicle over its life cycle.Finally,the results are analyzed and discussed to determine which powertrain technology fits best into which energy sector CO_(2) emissions window.展开更多
In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the ap...In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.展开更多
Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylide...Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP,PH)nanofiber membranes were used as tribo-positive and tribo-negative materials,respectively.Phytic acid-doped polyaniline(PANI)/cotton fabric(PPCF)and ethylenediamine(EDA)-crosslinked PAl(EPAl)nanofiber membranes were used as triboelectrode and triboencapsulation materials,respectively.The result showed that when the PAl-PH-based TENG was shaped as a circle with a radius of 1 cm,under the pressure of 50 N,and the frequency of 0.5 Hz,the open-circuit voltage(V_(oc))and short-circuit current(I_(sc))reached the highest value of 66.6 V and-93.4 to 110.1 nA,respectively.Moreover,the PH-based TENG could be used as a fabric sensor to detect fabric composition and as a sensor-inductive switch for light bulbs or beeping warning devices.When the PAl-PH-based TENG was shaped as a 5×5 cm^(2)rectangle,a 33 pF capacitor could be charged to 15 V in 28 s.Interestingly,compared to PAl nanofiber membranes,EPAl nanofiber membranes exhibited good dyeing properties and excellent solvent resistance.The PPCF exhibited<5%resistance change after washing,bending,and stretching.展开更多
The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified ra...The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.展开更多
To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-ne...To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-negative(MNG) and mu-nearzero(MNZ) metamaterials. First, a hybrid metamaterial consisted of central MNG unit for magnetic field concentration and surrounding MNZ units for magnetic leakage shielding was established by theoretical calculation. Afterwards, the magnetic field distribution of wireless power supply system with MNG-MNZ metamaterial slab was acquired via finite element simulation and verified to be better than the distribution with conventional MNG slab deployed. Finally, an experimental platform of wireless power supply system was established with which power transfer experiment and system temperature rise experiment were conducted.Simulation and experimental results showed that the power transfer efficiency was improved from 44.44%,19.42%, 8.63% and 6.19% to 55.77%, 62.39%, 20.81%and 14.52% at 9.6 mm, 20 mm, 30 mm and 50 mm,respectively. The maximum SAR acquired by SAR simulation under human body environment was-7.14 dbm and maximum reduction of the magnetic field strength around the receiving coil was 2.82 A/m. The maximum temperature rise during 30min charging test was 3.85℃,and the safety requirements of human bodies were met.展开更多
This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a disti...This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.展开更多
Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of t...Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.展开更多
In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is ...In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.展开更多
In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expan...In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.展开更多
To minimize the power consumption with resources operating at multiple voltages a time-constrained algorithm is presented.The input to the scheme is an unscheduled data flow graph (DFG),and timing or resource constrai...To minimize the power consumption with resources operating at multiple voltages a time-constrained algorithm is presented.The input to the scheme is an unscheduled data flow graph (DFG),and timing or resource constraints.Partitioning is considered with scheduling in the proposed algorithm as multiple voltage design can lead to an increase in interconnection complexity at layout level.That is,in the proposed algorithm power consumption is first reduced by the scheduling step,and then the partitioning step takes over to decrease the interconnection complexity.The time-constrained algorithm has time complexity of O(n 2),where n is the number of nodes in the DFG.Experiments with a number of DSP benchmarks show that the proposed algorithm achieves the power reduction under timing constraints by an average of 46 5%.展开更多
As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft ele...As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.展开更多
The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC ...The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC BPCU) is put forward to manage the power supply system automatically. The redundancy innovation is also applied in both hardware and software of DC BPCU. Furthermore, redundancy fault diagnosis is discussed through the existing parts. Experiments and applications show that the proposed aircraft DC power supply system possesses many advantages of high reliability, high automation and so on.展开更多
The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal m...The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5.展开更多
The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presen...The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presented. The large-signal model of it is also derived. Based on the comprehensive analysis of the system model, the compensator is designed to make the system match better and to improve its dynamic performance and the stability under perturbations. Finally, the design methods and the analysis are verified by simulation and experimental results.展开更多
The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersource...The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[展开更多
The supply and demand features of China electric power market are elaborated in this paper, based on the data of power production and demand in the first quarter 2001, and the present situation on power supply and dem...The supply and demand features of China electric power market are elaborated in this paper, based on the data of power production and demand in the first quarter 2001, and the present situation on power supply and demand is analyzed from multi aspects.展开更多
基金supported in part by the Scientific Foundation for Outstanding Young Scientists of Sichuan under Grant No.2021JDJQ0032in part by the National Natural Science Foundation of China under Grant No.52107128in part by the Natural Science Foundation of Sichuan Province under Grant No.2022NSFSC0436.
文摘Traction power systems(TPSs)play a vital role in the operation of electrified railways.The transformation of conventional railway TPSs to novel structures is not only a trend to promote the development of electrified railways toward high-efficiency and resilience but also an inevitable requirement to achieve carbon neutrality target.On the basis of sorting out the power supply structures of conventional AC and DC modes,this paper first reviews the characteristics of the existing TPSs,such as weak power supply flexibility and low-energy efficiency.Furthermore,the power supply structures of various TPSs for future electrified railways are described in detail,which satisfy longer distance,low-carbon,high-efficiency,high-reliability and high-quality power supply requirements.Meanwhile,the application prospects of different traction modes are discussed from both technical and economic aspects.Eventually,this paper introduces the research progress of mixed-system electrified railways and traction power supply technologies without catenary system,speculates on the future development trends and challenges of TPSs and predicts that TPSs will be based on the continuous power supply mode,employing power electronic equipment and intelligent information technology to construct a railway comprehensive energy system with renewable energy.
文摘A circular and sustainable economy for the private transport sector requires a holistic view of the emitted CO_(2) emissions.Looking at the energy supplied to the vehicle in terms of a circular economy leads to defossilisation.The remaining energy sources or forms are renewable electric energy,green hydrogen and renewable fuels.A holistic view of the CO_(2) emissions of these energy sources and forms and the resulting powertrain technologies must take into account all cradle-to-grave emissions for both the vehicle and the energy supply.In order to compare the different forms of energy,the three most relevant forms of powertrain technology are considered and a configuration is chosen that allows for an appropriate comparison.For this purpose,data from the FVV project“Powertrain 2040”are used[1]and combined with research data on the energy supply chain for passenger cars.The three comparable powertrain configurations are a battery electric vehicle,a fuel cell electric vehicle and an internal combustion engine hybrid vehicle fueled with electric fuel.First,the three selected powertrain configurations are presented in terms of their performance,weight,technology and other characteristics.A comparative analysis is carried out for different CO_(2) emissions of the electricity mix.The electricity mix is used for both the production of the vehicle and the energy.The results are presented in the form of cradle-to-wheel emissions,which consider the total CO_(2) emissions of the vehicle over its life cycle.Finally,the results are analyzed and discussed to determine which powertrain technology fits best into which energy sector CO_(2) emissions window.
文摘In this study,the present situation and characteristics of power supply in remote areas are summarized.By studying the cases of power supply projects in remote areas,the experience is analyzed and described,and the applicability of related technologies,such as grid-forming storage and power load management,is studied,including grid-connection technologies,such as grid-forming converters and power load management.On this basis,three power-supply modes were proposed.The application scenarios and advantages of the three modes were compared and analyzed.Based on the local development situation,the temporal sequences of the three schemes are described,and a case study was conducted.The study of the heavy-load power supply mode in remote areas contributes to solving the problem of heavy-load green power consumption in remote areas and promoting the further development of renewable energy.
基金supported by the JSPS KAKENHI(Grant numbers JP20H00288 and JP22K02136)
文摘Wearable triboelectric nanogenerators(TENGs)have attracted attention owing to their ability to harvest energy from the surrounding environment without maintenance.Herein,polyetherimide-Al_(2)O_(3)(PAl)and polyvinylidene fluoride-co-hexafluoropropylene(PVDF-HFP,PH)nanofiber membranes were used as tribo-positive and tribo-negative materials,respectively.Phytic acid-doped polyaniline(PANI)/cotton fabric(PPCF)and ethylenediamine(EDA)-crosslinked PAl(EPAl)nanofiber membranes were used as triboelectrode and triboencapsulation materials,respectively.The result showed that when the PAl-PH-based TENG was shaped as a circle with a radius of 1 cm,under the pressure of 50 N,and the frequency of 0.5 Hz,the open-circuit voltage(V_(oc))and short-circuit current(I_(sc))reached the highest value of 66.6 V and-93.4 to 110.1 nA,respectively.Moreover,the PH-based TENG could be used as a fabric sensor to detect fabric composition and as a sensor-inductive switch for light bulbs or beeping warning devices.When the PAl-PH-based TENG was shaped as a 5×5 cm^(2)rectangle,a 33 pF capacitor could be charged to 15 V in 28 s.Interestingly,compared to PAl nanofiber membranes,EPAl nanofiber membranes exhibited good dyeing properties and excellent solvent resistance.The PPCF exhibited<5%resistance change after washing,bending,and stretching.
基金This work was supported by the Applied Basic Research Program of Science and Technology Plan Project of Sichuan Province of China(No.2020YJ0252).
文摘The low-frequency oscillation(LFO)has occurred in the train-network system due to the introduction of the power electronics of the trains.The modeling and analyzing method in current researches based on electrified railway unilateral power supply system are not suitable for the LFO analysis in a bilateral power supply system,where the trains are supplied by two traction substations.In this work,based on the single-input and single-output impedance model of China CRH5 trains,the node admittance matrices of the train-network system both in unilateral and bilateral power supply modes are established,including three-phase power grid,traction transformers and traction network.Then the modal analysis is used to study the oscillation modes and propagation characteristics of the unilateral and bilateral power supply systems.Moreover,the influence of the equivalent inductance of the power grid,the length of the transmission line,and the length of the traction network are analyzed on the critical oscillation mode of the bilateral power supply system.Finally,the theoretical analysis results are verified by the time-domain simulation model in MATLAB/Simulink.
基金supported by 2023 Liaoning Provincial Department of Education Basic Research Project (General Project)(JYTMS20230815)。
文摘To solve the low power transfer efficiency and magnetic field leakage problems of cardiac pacemaker wireless powering, we proposed a wireless power supply system suitable for implanted cardiac pacemaker based on mu-negative(MNG) and mu-nearzero(MNZ) metamaterials. First, a hybrid metamaterial consisted of central MNG unit for magnetic field concentration and surrounding MNZ units for magnetic leakage shielding was established by theoretical calculation. Afterwards, the magnetic field distribution of wireless power supply system with MNG-MNZ metamaterial slab was acquired via finite element simulation and verified to be better than the distribution with conventional MNG slab deployed. Finally, an experimental platform of wireless power supply system was established with which power transfer experiment and system temperature rise experiment were conducted.Simulation and experimental results showed that the power transfer efficiency was improved from 44.44%,19.42%, 8.63% and 6.19% to 55.77%, 62.39%, 20.81%and 14.52% at 9.6 mm, 20 mm, 30 mm and 50 mm,respectively. The maximum SAR acquired by SAR simulation under human body environment was-7.14 dbm and maximum reduction of the magnetic field strength around the receiving coil was 2.82 A/m. The maximum temperature rise during 30min charging test was 3.85℃,and the safety requirements of human bodies were met.
基金supported by the National Natural Science Foundation of China(51767012)Curriculum Ideological and Political Connotation Construction Project of Kunming University of Science and Technology(2021KS009)Kunming University of Science and Technology Online Open Course(MOOC)Construction Project(202107).
文摘This paper proposes a longitudinal protection scheme utilizing empirical wavelet transform(EWT)for a through-type cophase traction direct power supply system,where both sides of a traction network line exhibit a distinctive boundary structure.This approach capitalizes on the boundary’s capacity to attenuate the high-frequency component of fault signals,resulting in a variation in the high-frequency transient energy ratio when faults occur inside or outside the line.During internal line faults,the high-frequency transient energy at the checkpoints located at both ends surpasses that of its neighboring lines.Conversely,for faults external to the line,the energy is lower compared to adjacent lines.EWT is employed to decompose the collected fault current signals,allowing access to the high-frequency transient energy.The longitudinal protection for the traction network line is established based on disparities between both ends of the traction network line and the high-frequency transient energy on either side of the boundary.Moreover,simulation verification through experimental results demonstrates the effectiveness of the proposed protection scheme across various initial fault angles,distances to faults,and fault transition resistances.
文摘Purpose–Auxiliary power system is an indispensable part of the train;the auxiliary systems of both electric locomotives and EMUs mainly are powered by one of the two ways,which are either from auxiliary windings of traction transformers or from DC-link voltage of traction converters.Powered by DC-link voltage of traction converters,the auxiliary systems were maintained of uninterruptable power supply with energy from electric braking.Meanwhile,powered by traction transformers,the auxiliary systems were always out of power while passing the neutral section of power supply grid and control system is powered by battery at this time.Design/methodology/approach–Uninterrupted power supply of auxiliary power system powered by auxiliary winding of traction transformer was studied.Failure reasons why previous solutions cannot be realized are analyzed.An uninterruptable power supply scheme for the auxiliary systems powered by auxiliary windings of traction transformers is proposed in this paper.The validity of the proposed scheme is verified by simulation and experimental results and on-site operation of an upgraded HXD3C type locomotive.This scheme is attractive for upgrading practical locomotives with the auxiliary systems powered by auxiliary windings of traction transformers.Findings–This scheme regenerates braking power supplied to auxiliary windings of traction transformers while a locomotive runs in the neutral section of the power supply grid.Control objectives of uninterrupted power supply technology are proposed,which are no overvoltage,no overcurrent and uninterrupted power supply.Originality/value–The control strategies of the scheme ensure both overvoltage free and inrush current free when a locomotive enters or leaves the neutral section.Furthermore,this scheme is cost low by employing updated control strategy of software and add both the two current sensors and two connection wires of hardware.
文摘In connection with the current prospect of decarbonization of coal energy through the use of small nuclear power plants (SNPPs) at existing TPPs as heat sources for heat supply to municipal heating networks, there is a technological need to improve heat supply schemes to increase their environmental friendliness and efficiency. The paper proves the feasibility of using the heat-feeding mode of ASHPs for urban heat supply by heating the network water with steam taken from the turbine. The ratio of electric and thermal power of a “nuclear” combined heat and power plant is given. The advantage of using a heat pump, which provides twice as much electrical power with the same heat output, is established. Taking into account that heat in these modes is supplied with different potential, the energy efficiency was used to compare these options. To increase the heat supply capacity, a scheme with the use of a high-pressure heater in the backpressure mode and with the heating of network water with hot steam was proposed. Heat supply from ASHPs is efficient and environmentally friendly even in the case of significant remoteness of heat consumers.
文摘In recent years,China has made significant progress in the construction of highways,resulting in an improved highway network that has provided robust support for economic and social development.However,the rapid expansion of highway construction,power supply,and distribution has led to several challenges in mechanical and electrical engineering technology.Ensuring the safe,stable,and cost-effective operation of the power supply and distribution system to meet the diverse requirements of highway operations has become a pressing issue.This article takes an example of a highway electromechanical engineering power supply and distribution construction project to provide insight into the construction process of highway electromechanical engineering power supply and distribution technology.
文摘To minimize the power consumption with resources operating at multiple voltages a time-constrained algorithm is presented.The input to the scheme is an unscheduled data flow graph (DFG),and timing or resource constraints.Partitioning is considered with scheduling in the proposed algorithm as multiple voltage design can lead to an increase in interconnection complexity at layout level.That is,in the proposed algorithm power consumption is first reduced by the scheduling step,and then the partitioning step takes over to decrease the interconnection complexity.The time-constrained algorithm has time complexity of O(n 2),where n is the number of nodes in the DFG.Experiments with a number of DSP benchmarks show that the proposed algorithm achieves the power reduction under timing constraints by an average of 46 5%.
文摘As a matured technique used in many fields,the distributed computer system is still a new management method for the aeronautical electrical power distribution system in our country. In this paper, a novel aircraft electrical power distribution system based on the distributed computer system is proposed. The principles, features and structure of the aircraft electrical power distribution system and the distributed computer system named electrical load management system (ELMS) are studied. The ELMS composed of four electrical load management centers (ELMCs) and two power source processors (PSPs) operates in the 1553B buses. Principles of the ELMCs and the PSPs are introduced. With the application of the distributed computer system, the aircraft electrical power distribution system is simple, adaptable and flexible.
文摘The redundancy technology for the aircraft multi-channel DC electrical power supply system is studied. In this system, the key loads can obtain power from seven sources. The direct current bus power control unit (DC BPCU) is put forward to manage the power supply system automatically. The redundancy innovation is also applied in both hardware and software of DC BPCU. Furthermore, redundancy fault diagnosis is discussed through the existing parts. Experiments and applications show that the proposed aircraft DC power supply system possesses many advantages of high reliability, high automation and so on.
基金The Natural Science Foundation of Jiangsu Higher Education Institutions of China(No.2009112TSJ0124)
文摘The universal mathematical model of an engine is established,and an economical zone,in which an engine mainly provides medium output load at medium speed,is presented.Based on the experimental data and the universal model of such an engine above,a mathematical model of a refitted engine is provided.The boundary of the corresponding economical zone is further demarcated,and the optimal operating curve and the operating point of the engine are analyzed.Then,the energy transforming models of the power system are established in the mode of cooling,heating and power(MCHP),the mode of heating and power(MHP)and the mode of electricity powering(MEP).The parameter matching of the power system is optimized according to the transmission ratios of the gear box in the power distribution system.The results show that,in the MCHP,the speed transmission ratio of the engine to the gear box(ies)and the speed transmission ratio of the motor to the gear box(ims)are defined as 2.9 and 1,respectively;in the MHP,when the demand load of the power system is less than the low critical load of the economical zone,the speed transmission ratio of the motor to the engine(ime)is equal to 1,and when the demand load of the power system exceeds the low critical load of the economical zone,ime equals 0.85;in the MEP,the optimal value of ims is defined as 2.5.
文摘The dynamic performance and the stability are essential for a system. A new circuit topology used for electrical discharge machining (EDM) power and made up of complex-pulse (voltage-pulse and current-pulse) is presented. The large-signal model of it is also derived. Based on the comprehensive analysis of the system model, the compensator is designed to make the system match better and to improve its dynamic performance and the stability under perturbations. Finally, the design methods and the analysis are verified by simulation and experimental results.
文摘The main problem existing in Guangdong electric power sources is analyzed in this paper. Based on theanalysis on energy-supply features, power demand and the technical and economic performances of various powersources in Guangdong, the power sources construction scale and its structure are studied and analyzed in detail byusing Generation Expansion Software Package (GESP). The future development of Guangdong electric power sourcesunder the new situation of "Power from West to East" is studied as well.[
文摘The supply and demand features of China electric power market are elaborated in this paper, based on the data of power production and demand in the first quarter 2001, and the present situation on power supply and demand is analyzed from multi aspects.