Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-tempora...Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.展开更多
This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a u...This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.展开更多
Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particl...Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels.展开更多
The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the...The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the doubly-fed induction generator (DFIG) wind farm to realize smooth control of wind power output. Based on improved wind power prediction algorithm and wind speed-power curve modeling, a new smooth control strategy with the FESS was proposed. The requirement of power system dispatch for wind power prediction and flywheel rotor speed limit were taken into consideration during the process. While smoothing the wind power fluctuation, FESS can track short-term planned output of wind farm. It was demonstrated by quantitative analysis of simulation results that the proposed control strategy can smooth the active power fluctuation of wind farm effectively and thereby improve power quality of the power grid.展开更多
The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal b...The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal bundled power system, accurate data-driven analysis is necessary to maintain real-time balance between electricity supply and demand. By summarizing the development and characteristics of wind–thermal bundled power system in China and different countries, current research in this field can be clearly defined in two aspects: short-term wind power prediction for wind farms and performance evaluation of automatic generation control (AGC) for thermal power generation units. For short-term wind power prediction, it is recommended to focus on historical data preprocessing and artificial intelligence methods. The technical characteristics of different data-driven wind power prediction methods have been compared in detail. For performance evaluation of AGC units, a comprehensive analysis was conducted on current evaluation methods, including the “permitted-band” and “regulation mileage” methods, as well as the issue of evaluation failure in traditional evaluation methods in practical engineering. Finally, the relative optimal dynamic performance of AGC units was discussed and the future trend of data-driven research in wind–thermal bundled power system was summarized.展开更多
Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters...Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.展开更多
Since wind power has the features of being intermittent and unpredictable, and usually needs transmission over long distances, grid integration of large-scale wind power will exert signif icant influence on power grid...Since wind power has the features of being intermittent and unpredictable, and usually needs transmission over long distances, grid integration of large-scale wind power will exert signif icant influence on power grid planning and construction, and will make a heavy impact on the safe and reliable operation of power systems. To deal with the diff iculties of large scale wind power dispatch, this paper presents a new automatic generation control (AGC) scheme that involves the participation of wind farms. The scheme is based on ultra-short-term wind power forecast. The author establishes a generation output distribution optimization mode for the power system with wind farms and verif ies the feasibility of the scheme by an example.展开更多
The seasonality and randomness of wind present a significant challenge to the operation of modern power systems with high penetration of wind generation. An effective shortterm wind power prediction model is indispens...The seasonality and randomness of wind present a significant challenge to the operation of modern power systems with high penetration of wind generation. An effective shortterm wind power prediction model is indispensable to address this challenge. In this paper, we propose a combined model, i.e.,a wind power prediction model based on multi-class autoregressive moving average(ARMA). It has a two-layer structure: the first layer classifies the wind power data into multiple classes with the logistic function based classification method;the second layer trains the prediction algorithm in each class. This two-layer structure helps effectively tackle the seasonality and randomness of wind power while at the same time maintaining high training efficiency with moderate model parameters. We interpret the training of the proposed model as a solvable optimization problem. We then adopt an iterative algorithm with a semi-closed-form solution to efficiently solve it. Data samples from open-source projects demonstrate the effectiveness of the proposed model. Through a series of comparisons with other state-of-the-art models, the experimental results confirm that the proposed model improves not only the prediction accuracy,but also the parameter estimation efficiency.展开更多
A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fau...A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.展开更多
The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive co...The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.展开更多
Renewable energy has become a solution to the world’s energy concerns in recent years.Photovoltaic(PV)technology is the fastest technique to convert solar radiation into electricity.Solar-powered buses,metros,and car...Renewable energy has become a solution to the world’s energy concerns in recent years.Photovoltaic(PV)technology is the fastest technique to convert solar radiation into electricity.Solar-powered buses,metros,and cars use PV technology.Such technologies are always evolving.Included in the parameters that need to be analysed and examined include PV capabilities,vehicle power requirements,utility patterns,acceleration and deceleration rates,and storage module type and capacity,among others.PVPG is intermit-tent and weather-dependent.Accurate forecasting and modelling of PV sys-tem output power are key to managing storage,delivery,and smart grids.With unparalleled data granularity,a data-driven system could better anticipate solar generation.Deep learning(DL)models have gained popularity due to their capacity to handle complex datasets and increase computing power.This article introduces the Galactic Swarm Optimization with Deep Belief Network(GSODBN-PPGF)model.The GSODBN-PPGF model predicts PV power production.The GSODBN-PPGF model normalises data using data scaling.DBN is used to forecast PV power output.The GSO algorithm boosts the DBN model’s predicted output.GSODBN-PPGF projected 0.002 after 40 h but observed 0.063.The GSODBN-PPGF model validation is compared to existing approaches.Simulations showed that the GSODBN-PPGF model outperformed recent techniques.It shows that the proposed model is better at forecasting than other models and can be used to predict the PV power output for the next day.展开更多
基金The Science and Technology Project of the State Grid Corporation of China(Research and Demonstration of Loss Reduction Technology Based on Reactive Power Potential Exploration and Excitation of Distributed Photovoltaic-Energy Storage Converters:5400-202333241 A-1-1-ZN).
文摘Due to the unpredictable output characteristics of distributed photovoltaics,their integration into the grid can lead to voltage fluctuations within the regional power grid.Therefore,the development of spatial-temporal coordination and optimization control methods for distributed photovoltaics and energy storage systems is of utmost importance in various scenarios.This paper approaches the issue from the perspective of spatiotemporal forecasting of distributed photovoltaic(PV)generation and proposes a Temporal Convolutional-Long Short-Term Memory prediction model that combines Temporal Convolutional Networks(TCN)and Long Short-Term Memory(LSTM).To begin with,an analysis of the spatiotemporal distribution patterns of PV generation is conducted,and outlier data is handled using the 3σ rule.Subsequently,a novel approach that combines temporal convolution and LSTM networks is introduced,with TCN extracting spatial features and LSTM capturing temporal features.Finally,a real spatiotemporal dataset from Gansu,China,is established to compare the performance of the proposed network against other models.The results demonstrate that the model presented in this paper exhibits the highest predictive accuracy,with a single-step Mean Absolute Error(MAE)of 1.782 and an average Root Mean Square Error(RMSE)of 3.72 for multi-step predictions.
文摘This paper presents a comprehensive study that includes the sizing and power flow by series and parallel inverters in a distributed generation system(DGs)that integrates the system of hybrid wind photovoltaic with a unified power quality conditioner(UPQC).In addition to supplying active power to the utility grid,the system of hybrid wind photovoltaic functions as a UPQC,compensating reactive power and suppressing the harmonic load currents.Additionally,the load is supplied with harmonic-free,balanced and regulated output voltages.Since PVWind-UPQC is established on a dual compensation scheme,the series inverter works like a sinusoidal current source,while the parallel inverter works like a sinusoidal voltage source.Consequently,a smooth alteration from interconnected operating modes to island operating modes and vice versa can be achieved without load voltage transients.Since PV-Wind-UPQC inverters handle the energy generated through the hybrid wind photovoltaic system and the energy demanded through the load,the converters should be sized cautiously.A detailed study of the flow of power via the PV-Wind-UPQC is imperative to gain a complete understanding of the system operation and the proper design of the converters.Thus,curves that allow the sizing of the power converters according to the power flow via the converters are presented and discussed.Simulation results are presented to assess both steady state and dynamic performances of the grid connected hybrid system of PV-Wind-UPQC.This investigation is verified by simulating and analyzing the results with Matlab/Simulink.
基金Project supported by the National Natural Science Foundation of China(Grant No.12064034)the Leading Talents Project of Science and Technology Innovation in Ningxia Hui Autonomous Region,China(Grant No.2020GKLRLX08)+1 种基金the Natural Science Foundation of Ningxia Hui Autonomous Region,China(Grant Nos.2022AAC03643 and2022AAC03117)the Major Science and Technology Project of Ningxia Hui Autonomous Region,China(Grant No.2022BDE03006)。
文摘Methods to remove dust deposits by high-speed airflow have significant potential applications,with optimal design of flow velocity being the core technology.In this paper,we discuss the wind speed required for particle removal from photovoltaic(PV)panels by compressed air by analyzing the force exerted on the dust deposited on inclined photovoltaic panels,which also included different electrification mechanisms of dust while it is in contact with the PV panel.The results show that the effect of the particle charging mechanism in the electric field generated by the PV panel is greatly smaller than the effect of the Van der Waals force and gravity,but the effect of the particle charged by the contact electrification mechanism in the electrostatic field is very pronounced.The wind speed required for dust removal from the PV panel increases linearly with the PV panel electric field,so we suggest that the nighttime,when the PV electric field is relatively small,would be more appropriate time for dust removal.The above results are of great scientific importance for accurately grasping the dust distribution law and for achieving scientific removal of dust on PV panels.
文摘The fluctuation of active power output of wind farm has many negative impacts on large-scale wind power integration into power grid. In this paper, flywheel energy storage system (FESS) was connected to AC side of the doubly-fed induction generator (DFIG) wind farm to realize smooth control of wind power output. Based on improved wind power prediction algorithm and wind speed-power curve modeling, a new smooth control strategy with the FESS was proposed. The requirement of power system dispatch for wind power prediction and flywheel rotor speed limit were taken into consideration during the process. While smoothing the wind power fluctuation, FESS can track short-term planned output of wind farm. It was demonstrated by quantitative analysis of simulation results that the proposed control strategy can smooth the active power fluctuation of wind farm effectively and thereby improve power quality of the power grid.
文摘The wind–thermal bundled power system achieves energy complementarity and optimized scheduling, which is an important way to build a new type of energy system. For the safe and stable operation of the wind–thermal bundled power system, accurate data-driven analysis is necessary to maintain real-time balance between electricity supply and demand. By summarizing the development and characteristics of wind–thermal bundled power system in China and different countries, current research in this field can be clearly defined in two aspects: short-term wind power prediction for wind farms and performance evaluation of automatic generation control (AGC) for thermal power generation units. For short-term wind power prediction, it is recommended to focus on historical data preprocessing and artificial intelligence methods. The technical characteristics of different data-driven wind power prediction methods have been compared in detail. For performance evaluation of AGC units, a comprehensive analysis was conducted on current evaluation methods, including the “permitted-band” and “regulation mileage” methods, as well as the issue of evaluation failure in traditional evaluation methods in practical engineering. Finally, the relative optimal dynamic performance of AGC units was discussed and the future trend of data-driven research in wind–thermal bundled power system was summarized.
文摘Against the backdrop of global energy shortages and increasingly severe environmental pollution,renewable energy is gradually becoming a significant direction for future energy development.Power electronics converters,as the core technology for energy conversion and control,play a crucial role in enhancing the efficiency and stability of renewable energy systems.This paper explores the basic principles and functions of power electronics converters and their specific applications in photovoltaic power generation,wind power generation,and energy storage systems.Additionally,it analyzes the current innovations in high-efficiency energy conversion,multilevel conversion technology,and the application of new materials and devices.By studying these technologies,the aim is to promote the widespread application of power electronics converters in renewable energy systems and provide theoretical and technical support for achieving sustainable energy development.
文摘Since wind power has the features of being intermittent and unpredictable, and usually needs transmission over long distances, grid integration of large-scale wind power will exert signif icant influence on power grid planning and construction, and will make a heavy impact on the safe and reliable operation of power systems. To deal with the diff iculties of large scale wind power dispatch, this paper presents a new automatic generation control (AGC) scheme that involves the participation of wind farms. The scheme is based on ultra-short-term wind power forecast. The author establishes a generation output distribution optimization mode for the power system with wind farms and verif ies the feasibility of the scheme by an example.
基金supported by the Guangdong-Macao Joint Funding Project(No. 2021A0505080015)Science and Technology Planning Project of Guangdong Province (No. 2019B010137006)Science and Technology Development Fund,Macao SAR (No. SKL-IOTSC(UM)-2021-2023)。
文摘The seasonality and randomness of wind present a significant challenge to the operation of modern power systems with high penetration of wind generation. An effective shortterm wind power prediction model is indispensable to address this challenge. In this paper, we propose a combined model, i.e.,a wind power prediction model based on multi-class autoregressive moving average(ARMA). It has a two-layer structure: the first layer classifies the wind power data into multiple classes with the logistic function based classification method;the second layer trains the prediction algorithm in each class. This two-layer structure helps effectively tackle the seasonality and randomness of wind power while at the same time maintaining high training efficiency with moderate model parameters. We interpret the training of the proposed model as a solvable optimization problem. We then adopt an iterative algorithm with a semi-closed-form solution to efficiently solve it. Data samples from open-source projects demonstrate the effectiveness of the proposed model. Through a series of comparisons with other state-of-the-art models, the experimental results confirm that the proposed model improves not only the prediction accuracy,but also the parameter estimation efficiency.
文摘A novel fault ride-through strategy for wind turbines,based on permanent magnet synchronous generator,has been proposed.The proposed strategy analytically formulates the reference current signals,disregarding grid fault type and utilizes the whole system capacity to inject the reactive current required by grid codes and deliver maximum possible active power to support grid frequency and avoid generation loss.All this has been reached by taking the grid-side converter’s phase current limit into account.The strategy is compatible with different countries’grid codes and prevents pulsating active power injection,in an unbalanced grid condition.Model predictive current controller is applied to handling rapid transients.During faults,the energy storage system maintains DC-link voltage,which causes voltage fluctuations to be eliminated,significantly.A fault ride-through strategy was proposed for PMSG-based wind turbines,neglecting fault characteristics,second,reaching maximum possible grid support in faulty grid conditions,while avoiding over-current and third,considerable reduction in energy storage system size and power rating.Inspiring simulations have been carried out through MATLAB/SIMULINK to validate the feasibility and competency of the proposed fault ride-through method and efficiency of the entire control system.
基金supported by National Natural Science Foundation Joint Key Project of China(2016YFB0900900).
文摘The utilization of renewable energy in sending-end power grids is increasing rapidly,which brings difficulties to voltage control.This paper proposes a coordinated voltage control strategy based on model predictive control(MPC)for the renewable energy power plants of wind and solar power connected to a weak sending-end power grid(WSPG).Wind turbine generators(WTGs),photovoltaic arrays(PVAs),and a static synchronous compensator are coordinated to maintain voltage within a feasible range during operation.This results in the full use of the reactive power capability of WTGs and PVAs.In addition,the impact of the active power outputs of WTGs and PVAs on voltage control are considered because of the high R/X ratio of a collector system.An analytical method is used for calculating sensitivity coefficients to improve computation efficiency.A renewable energy power plant with 80 WTGs and 20 PVAs connected to a WSPG is used to verify the proposed voltage control strategy.Case studies show that the coordinated voltage control strategy can achieve good voltage control performance,which improves the voltage quality of the entire power plant.
基金funded by the Deanship of Scientific Research,Princess Nourah bint Abdulrahman University,through the Program of Research Project Funding after publication,Grand No.PRFA-P-42-16.
文摘Renewable energy has become a solution to the world’s energy concerns in recent years.Photovoltaic(PV)technology is the fastest technique to convert solar radiation into electricity.Solar-powered buses,metros,and cars use PV technology.Such technologies are always evolving.Included in the parameters that need to be analysed and examined include PV capabilities,vehicle power requirements,utility patterns,acceleration and deceleration rates,and storage module type and capacity,among others.PVPG is intermit-tent and weather-dependent.Accurate forecasting and modelling of PV sys-tem output power are key to managing storage,delivery,and smart grids.With unparalleled data granularity,a data-driven system could better anticipate solar generation.Deep learning(DL)models have gained popularity due to their capacity to handle complex datasets and increase computing power.This article introduces the Galactic Swarm Optimization with Deep Belief Network(GSODBN-PPGF)model.The GSODBN-PPGF model predicts PV power production.The GSODBN-PPGF model normalises data using data scaling.DBN is used to forecast PV power output.The GSO algorithm boosts the DBN model’s predicted output.GSODBN-PPGF projected 0.002 after 40 h but observed 0.063.The GSODBN-PPGF model validation is compared to existing approaches.Simulations showed that the GSODBN-PPGF model outperformed recent techniques.It shows that the proposed model is better at forecasting than other models and can be used to predict the PV power output for the next day.