Power dissipation has become one of the key optimization conditions in logic design on field programmable gate arrays (FPGAs), thus the power estimation is necessary for logic design optimization. Nowadays, signal a...Power dissipation has become one of the key optimization conditions in logic design on field programmable gate arrays (FPGAs), thus the power estimation is necessary for logic design optimization. Nowadays, signal activity data created by logic simulation based on test vectors is essential to be used to determine the toggle rate of each signals and blocks in power estimation tools provided by field programmable gate array (FPGA) electronic design automation (EDA) tools. The accuracy of power estimation highly depends on the quality of test vectors, especially, pattern coverage. As probability distribution can describe the uncertainty signals, this work provides an algorithm which can estimate FPGAs power more effectively and accurately by using signal probability distribution rather than test vectors.展开更多
This paper proposes a new low power structure to improve the trade-off between the bandwidth and the power consumption of a programmable gain amplifier(PGA).The PGA consists of three-stage amplifiers, which includes...This paper proposes a new low power structure to improve the trade-off between the bandwidth and the power consumption of a programmable gain amplifier(PGA).The PGA consists of three-stage amplifiers, which includes a variable gain amplifier and DC offset cancellation circuits.The cutoff frequency of the DC offset cancellation circuits can be changed from 4 to 80 kHz.The chip was fabricated in 0.13μm CMOS technology. Measurement results showed that the gain of the PGA can be programmed from -5 to 60 dB.At the gain setting of 60 dB,the bandwidth can be tuned from 1 to 10 MHz,while the power consumption can be programmed from 850μA to 3.2 mA at a supply voltage of 1.2 V.Its in-band OIP3 result is at 14 dBm.展开更多
A 13-bit 8 MSample/s high-accuracy CMOS pipeline ADC is proposed. At the input, the sample-andhold amplifier (SHA) is removed for low power and low noise; meanwhile, an improved sampling circuit is adopted to allevi...A 13-bit 8 MSample/s high-accuracy CMOS pipeline ADC is proposed. At the input, the sample-andhold amplifier (SHA) is removed for low power and low noise; meanwhile, an improved sampling circuit is adopted to alleviate the clock skew effect. On-chip bias current is programmable to achieve low power dissipation at different sampling rates. Particularly, drain-to-source voltages in the operational amplifiers (opamps) are fixed to ensure high DC gain within the variant range of the bias current. Both on-chip and off-chip decoupling capacitors are used in the voltage reference circuit in consideration of low power and stability. The proposed ADC was implemented in 0.18-μm 1P6M CMOS technology. With a 2.4-MHz input, the measured peak SNDR and SFDR are 74.4 and 91.6 dB at 2.5 MSample/s, 74.3 and 85.4 dB at 8.0 MSample/s. It consumes 8.1, 21.6, 29.7, and 56.7 mW (including I/O drivers) when operating at 1.5, 2.5, 5.0, and 8.0 MSample/s with 2.7 V power supply, respectively. The chip occupies 3.2 mm^2, including I/O pads.展开更多
基金supported by the National Natural Science Foundation of China under Grant No. 61176025 and No. 61006027the Fundamental Research Funds for the Central Universities under Grant No.ZYGX2012J003+1 种基金National Laboratory of Analogue Integrated Circuit Grants under Grant No. 9140C0901101002 and No. 9140C0901101003New Century Excellent Talents Program under Grant No.NCET-10-0297
文摘Power dissipation has become one of the key optimization conditions in logic design on field programmable gate arrays (FPGAs), thus the power estimation is necessary for logic design optimization. Nowadays, signal activity data created by logic simulation based on test vectors is essential to be used to determine the toggle rate of each signals and blocks in power estimation tools provided by field programmable gate array (FPGA) electronic design automation (EDA) tools. The accuracy of power estimation highly depends on the quality of test vectors, especially, pattern coverage. As probability distribution can describe the uncertainty signals, this work provides an algorithm which can estimate FPGAs power more effectively and accurately by using signal probability distribution rather than test vectors.
基金Project supported by the National High-Tech Research and Development Program of China(No.2009AA011606)the National Natural Science Foundation of China(No.60976023)
文摘This paper proposes a new low power structure to improve the trade-off between the bandwidth and the power consumption of a programmable gain amplifier(PGA).The PGA consists of three-stage amplifiers, which includes a variable gain amplifier and DC offset cancellation circuits.The cutoff frequency of the DC offset cancellation circuits can be changed from 4 to 80 kHz.The chip was fabricated in 0.13μm CMOS technology. Measurement results showed that the gain of the PGA can be programmed from -5 to 60 dB.At the gain setting of 60 dB,the bandwidth can be tuned from 1 to 10 MHz,while the power consumption can be programmed from 850μA to 3.2 mA at a supply voltage of 1.2 V.Its in-band OIP3 result is at 14 dBm.
文摘A 13-bit 8 MSample/s high-accuracy CMOS pipeline ADC is proposed. At the input, the sample-andhold amplifier (SHA) is removed for low power and low noise; meanwhile, an improved sampling circuit is adopted to alleviate the clock skew effect. On-chip bias current is programmable to achieve low power dissipation at different sampling rates. Particularly, drain-to-source voltages in the operational amplifiers (opamps) are fixed to ensure high DC gain within the variant range of the bias current. Both on-chip and off-chip decoupling capacitors are used in the voltage reference circuit in consideration of low power and stability. The proposed ADC was implemented in 0.18-μm 1P6M CMOS technology. With a 2.4-MHz input, the measured peak SNDR and SFDR are 74.4 and 91.6 dB at 2.5 MSample/s, 74.3 and 85.4 dB at 8.0 MSample/s. It consumes 8.1, 21.6, 29.7, and 56.7 mW (including I/O drivers) when operating at 1.5, 2.5, 5.0, and 8.0 MSample/s with 2.7 V power supply, respectively. The chip occupies 3.2 mm^2, including I/O pads.