In order to improve the Power Quality(PQ)of traction power supply system and reduce the power rating and operation cost of compensator,a Static VAR Compensator(SVC)integrated Railway Power Conditioner(RPC)is presented...In order to improve the Power Quality(PQ)of traction power supply system and reduce the power rating and operation cost of compensator,a Static VAR Compensator(SVC)integrated Railway Power Conditioner(RPC)is presented in this paper.RPC is a widely used device in the AC electrified railway systems to enhance the PQ indices of the main network.The next generation of this equipment is Active Power Quality Compensator(APQC).The major concern of these compensators is their high kVA rating.In this paper,a hybrid technique is proposed to solve aforementioned problems.A combination of SVC as an auxiliary device is employed together with the main compensators,i.e.,RPC and APQC that leads on to the reduction of power rating of the main compensators.The use of proposed scheme will cause to reduce significantly the initial investment cost of compensation system.The main compensators are only utilized to balance active powers of two adjacent feeder sections and suppress harmonic currents.The SVCs are used to compensate reactive power and suppress the third and fifth harmonic currents.In this paper firstly,the PQ compensation procedure in AC electrified railway is analyzed step by step.Then,the control strategies for SVC and the main compensators are presented.Finally,a simulation is fulfilled using Matlab/Simulink software to verify the effectiveness and validity of the proposed scheme and compensation strategy and also demonstrate that this technique could compensate all PQ problems.展开更多
In this paper,the hybrid photovoltaic-thermoelectric generator(PVTEG)combined dynamic voltage restorer(DVR)system is proposed for the power quality disturbances compensation in a single-phase distribution system.The s...In this paper,the hybrid photovoltaic-thermoelectric generator(PVTEG)combined dynamic voltage restorer(DVR)system is proposed for the power quality disturbances compensation in a single-phase distribution system.The stable and precise level of input voltage is essential for the smooth and trouble-free operation of the electrically sensitive loads which are connected at the utility side to avoid system malfunctions.In this context,the hybrid PV-TEG energy module combined DVR system is proposed in this paper.With the support of the hybrid energy module,the DVR will perform the power quality disturbances compensation effectively with needed voltage and/or power.In the proposed system,the PV and TEG energy sources are connected electrically in series to produce adequate voltage for the DVR operation and the fractional factor-based variable incremental conduction(FFVINC)maximum power point tracking(MPPT)control algorithm is employed to extract the possible maximum power from the PV array.The intelligent fuzzy logic controller(FLC)is chosen for implementing the MPPT control algorithm.The half-bridge voltage source inverter(VSI)circuit and in-phase voltage compensation technique are used in the DVR for better power quality disturbances compensation.The performance and usefulness of the proposed DVR system are investigated by an extensive simulation study with four different modes of operation,the study results are confirmed that the proposed system promptly identifies the power quality disturbances for compensation.Moreover,the investigation proved that the combined PV and TEG energy module can provide better energy efficiency in converting solar irradiation into electricity.展开更多
文摘In order to improve the Power Quality(PQ)of traction power supply system and reduce the power rating and operation cost of compensator,a Static VAR Compensator(SVC)integrated Railway Power Conditioner(RPC)is presented in this paper.RPC is a widely used device in the AC electrified railway systems to enhance the PQ indices of the main network.The next generation of this equipment is Active Power Quality Compensator(APQC).The major concern of these compensators is their high kVA rating.In this paper,a hybrid technique is proposed to solve aforementioned problems.A combination of SVC as an auxiliary device is employed together with the main compensators,i.e.,RPC and APQC that leads on to the reduction of power rating of the main compensators.The use of proposed scheme will cause to reduce significantly the initial investment cost of compensation system.The main compensators are only utilized to balance active powers of two adjacent feeder sections and suppress harmonic currents.The SVCs are used to compensate reactive power and suppress the third and fifth harmonic currents.In this paper firstly,the PQ compensation procedure in AC electrified railway is analyzed step by step.Then,the control strategies for SVC and the main compensators are presented.Finally,a simulation is fulfilled using Matlab/Simulink software to verify the effectiveness and validity of the proposed scheme and compensation strategy and also demonstrate that this technique could compensate all PQ problems.
文摘In this paper,the hybrid photovoltaic-thermoelectric generator(PVTEG)combined dynamic voltage restorer(DVR)system is proposed for the power quality disturbances compensation in a single-phase distribution system.The stable and precise level of input voltage is essential for the smooth and trouble-free operation of the electrically sensitive loads which are connected at the utility side to avoid system malfunctions.In this context,the hybrid PV-TEG energy module combined DVR system is proposed in this paper.With the support of the hybrid energy module,the DVR will perform the power quality disturbances compensation effectively with needed voltage and/or power.In the proposed system,the PV and TEG energy sources are connected electrically in series to produce adequate voltage for the DVR operation and the fractional factor-based variable incremental conduction(FFVINC)maximum power point tracking(MPPT)control algorithm is employed to extract the possible maximum power from the PV array.The intelligent fuzzy logic controller(FLC)is chosen for implementing the MPPT control algorithm.The half-bridge voltage source inverter(VSI)circuit and in-phase voltage compensation technique are used in the DVR for better power quality disturbances compensation.The performance and usefulness of the proposed DVR system are investigated by an extensive simulation study with four different modes of operation,the study results are confirmed that the proposed system promptly identifies the power quality disturbances for compensation.Moreover,the investigation proved that the combined PV and TEG energy module can provide better energy efficiency in converting solar irradiation into electricity.