An optimal power distribution analysis for an all-optical sampling orthagonal frequency division multiplexing(OFDM) scheme with multiple modulation formats including diferential phase shift keyed(DPSK), diferential qu...An optimal power distribution analysis for an all-optical sampling orthagonal frequency division multiplexing(OFDM) scheme with multiple modulation formats including diferential phase shift keyed(DPSK), diferential quadrature phase shift keyed(DQPSK), and non-return-to-zero(NRZ) is proposed. The noise tolerances of different modulation formats are analyzed, and the optimal input power ratio between phase and intensity modulation formats for the best overall receiving performance is investigated under unchanged total input power. Moreover, this scheme can seamlessly coexist with the traditional WDM channel.展开更多
基金supported by the National Natural Science Fundation of China(Nos.60932004,61132004,and 61090391)the Program for New Century Excellent Talents in University(No.NCET-10-0520)
文摘An optimal power distribution analysis for an all-optical sampling orthagonal frequency division multiplexing(OFDM) scheme with multiple modulation formats including diferential phase shift keyed(DPSK), diferential quadrature phase shift keyed(DQPSK), and non-return-to-zero(NRZ) is proposed. The noise tolerances of different modulation formats are analyzed, and the optimal input power ratio between phase and intensity modulation formats for the best overall receiving performance is investigated under unchanged total input power. Moreover, this scheme can seamlessly coexist with the traditional WDM channel.