Skyrmion bags are spin structures with arbitrary topological charges, each of which is composed of a big skyrmion and several small skyrmions. In this work, by using an in-plane alternating current(AC) magnetic field,...Skyrmion bags are spin structures with arbitrary topological charges, each of which is composed of a big skyrmion and several small skyrmions. In this work, by using an in-plane alternating current(AC) magnetic field, we investigate the spinwave modes of skyrmion bags, which behave differently from the clockwise(CW) rotation mode and the counterclockwise(CCW) rotation mode of skyrmions because of their complex spin topological structures. The in-plane excitation power spectral density shows that each skyrmion bag possesses four resonance frequencies. By further studying the spin dynamics of a skyrmion bag at each resonance frequency, the four spin-wave modes, i.e., a CCW-CW mode, two CW-breathing modes with different resonance strengths, and an inner CCW mode, appear as a composition mode of outer skyrmion–inner skyrmions. Our results are helpful in understanding the in-plane spin excitation of skyrmion bags, which may contribute to the characterization and detection of skyrmion bags, as well as the applications in logic devices.展开更多
The vibration of an elastic beam experiencing vortex-induced vibration is numerically analyzed employing a wake-oscillator model. The influence of the excited mode, the initial velocity, the shedding pulsation and the...The vibration of an elastic beam experiencing vortex-induced vibration is numerically analyzed employing a wake-oscillator model. The influence of the excited mode, the initial velocity, the shedding pulsation and the mass ratio on the energy transfer among modes and the vibration amplitude is determined. Multiple frequencies are detected, and the power spectral density of the beam tip time series is used to calculate the dominant frequency.展开更多
With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's se...With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's security and stability.T his research conducts a comparative analysis of the generation mechanisms of GFOs versus the traditional special forced oscillations(SFOs),specifically,from the perspective of frequency domain.Similarities and differences in en-oscillating conditions,occurrence probabilities,and the influencing factors of GFO and SFO are compared to better understand and recognize the GFO theory and the response characteristics of the power system under random excitations.A series of simulations in the lO-generator,39-bus New England Test System is carried out to verify the analysis.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 12104124 and 12274111)the Natural Science Foundation of Hebei Province, China (Grant Nos. A2021201001 and A2021201008)+4 种基金the Central Guidance Fund on the Local Science and Technology Development of Hebei Province, China (Grant No. 236Z0601G)the Post-graduate’s Innovation Fund Project of Hebei Province, China (Grant No. CXZZSS2023007)the Advanced Talents Incubation Program of the Hebei University, China (Grant Nos. 521000981395, 521000981423, 521000981394, and 521000981390)the Research Foundation of Chongqing University of Science and technology, China (Grant No. ckrc2019017)the High-Performance Computing Center of Hebei University, China。
文摘Skyrmion bags are spin structures with arbitrary topological charges, each of which is composed of a big skyrmion and several small skyrmions. In this work, by using an in-plane alternating current(AC) magnetic field, we investigate the spinwave modes of skyrmion bags, which behave differently from the clockwise(CW) rotation mode and the counterclockwise(CCW) rotation mode of skyrmions because of their complex spin topological structures. The in-plane excitation power spectral density shows that each skyrmion bag possesses four resonance frequencies. By further studying the spin dynamics of a skyrmion bag at each resonance frequency, the four spin-wave modes, i.e., a CCW-CW mode, two CW-breathing modes with different resonance strengths, and an inner CCW mode, appear as a composition mode of outer skyrmion–inner skyrmions. Our results are helpful in understanding the in-plane spin excitation of skyrmion bags, which may contribute to the characterization and detection of skyrmion bags, as well as the applications in logic devices.
文摘The vibration of an elastic beam experiencing vortex-induced vibration is numerically analyzed employing a wake-oscillator model. The influence of the excited mode, the initial velocity, the shedding pulsation and the mass ratio on the energy transfer among modes and the vibration amplitude is determined. Multiple frequencies are detected, and the power spectral density of the beam tip time series is used to calculate the dominant frequency.
基金supported by the National Key Basic Research Program of China(973 Program)(2013CB228204)the National Natural Science Foundation of China(51137002,51190102).
文摘With the continuous incorporation of renewable energy and new loads into the electric power grid,random factors that induce general forced oscillations(GFOs)gradually become risks that affect the power system's security and stability.T his research conducts a comparative analysis of the generation mechanisms of GFOs versus the traditional special forced oscillations(SFOs),specifically,from the perspective of frequency domain.Similarities and differences in en-oscillating conditions,occurrence probabilities,and the influencing factors of GFO and SFO are compared to better understand and recognize the GFO theory and the response characteristics of the power system under random excitations.A series of simulations in the lO-generator,39-bus New England Test System is carried out to verify the analysis.