Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in sever...Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.展开更多
文摘Demand response(DR) is gaining more and more importance in the architecture of power systems in a context of flexible loads and high share of intermittent generation. Changes in electricity markets regulation in several countries have recently enabled an effective integration of DR mechanisms in power systems. Through its flexible components(pumps, tanks), drinking water systems are suitable candidates for energy-efficient DR mechanisms. However, these systems are often managed independently of power system operation for both economic and operational reasons. Indeed, a sufficient level of economic viability and water demands risk management are necessary for water utilities to integrate their flexibilities to power system operation. In this paper,we proposed a mathematical model for optimizing pump schedules in water systems while trading DR blocs in a spot power market during peak times. Uncertainties about water demands were considered in the mathematical model allowing to propose power reductions covering the potential risk of real-time water demand forecasting inaccuracy.Numerical results were discussed on a real water system in France, demonstrating both economic and ecological benefits.